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Abstract. We show that recent approaches of static analysis based on
quantitative typing systems can be extended to programming languages
with global state. More precisely, we define a call-by-value language
equipped with operations to access a global memory, together with a
semantic model based on a (tight) multi-type system that captures ex-
act measures of time and space related to evaluation of programs. We
show that the type system is quantitatively sound and complete with
respect to the original operational semantics of the language.

1 Introduction

The aim of this paper is to extend quantitative techniques of static analysis based
on multi-types to programs with effects.

Effectful Programs. Programming languages produce different kind of ef-
fects (observable interactions with the environment), such as handling excep-
tions, read/write from a global memory outside its own scope, using a database
or a file, performing non-deterministic choices, or using sample probabilistic
functions. The degree to which these side effects are used depends on each pro-
gramming paradigm [20] (imperative programming makes use of them while
declarative programming does not). In general, avoiding the use of side effects
facilitates the formal verification of programs, thus allowing to (statically) ensure
their correctness. Thus for example, the functional language Haskell eliminates
side effects by replacing them with monadic actions, a clean approach which
continues to attract growing attention. Indeed, rather than writing a function
that returns a raw type, an effectful function returns a raw type inside a useful
wrapper — where that wrapper is a monad [30]. This approach allows program-
ming languages to combine the qualities of both the imperative and declarative
worlds: programs produce effects, but these are encoded in such a way that
formal verifications can be performed very conveniently.
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Quantitative Properties. We address quantitative properties of programs
with effects using multi-types, which originate in the theory of intersection type
systems. They extend simple types with a new constructor N in such a way that
a program t is typable with o N 7 if ¢ is typable with both types ¢ and 7 in-
dependently. Intersection types were originally introduced as models capturing
computational properties of functional programming in a broader sense [I1]. For
example, termination of different evaluations strategies can be characterized by
typability in some appropriate intersection type system: a program t is termi-
nating if and only if ¢ is typable. Originally, intersection enjoys associativity,
commutativity, and in particular idempotency (i.e. ¢ N o = o). By changing
to a non-idempotent intersection constructor, one naturally comes to represent
types by multisets, which is why they are called multi-types. Just like their
idempotent precursors, multi-types still allow for a characterization of several
operational properties of programs, but they also grant a substantial improve-
ment: they provide quantitative measures about these properties. For example,
it is still possible to prove that a program is terminating if and only if it is
typable, but now an upper bound or exact measure for the time needed for its
evaluation length can be derived from the typing derivation of the program. This
shift of perspective, from idempotent to non-idempotent types, goes beyond low-
ering the logical complexity of the proof: the quantitative information provided
by typing derivations in the non-idempotent setting unveils crucial quantitative
relations between typing (static) and reduction (dynamic) of programs.

Upper Bounds and Exact Split Measures. Multi-types are extensively
used to reason about programming languages from a quantitative point of view,
as pioneered by de Carvalho [9JI0]. For example, they are able to provide upper
bounds, in the sense that the evaluation length of a program t plus the size of its
result (called normal form) can be bounded by the size of the type derivation
of t. A major drawback of this approach, however, is that the size of normal
forms can be exponentially bigger than the length of the evaluation reaching
those normal forms. This means that bounding the sum of these two integers
at the same time is too rough, and not very relevant from a quantitative point
of view. Fortunately, it is possible to extract better measures from a multi-type
system. A crucial point to obtain exact measures, instead of upper bounds, is
to consider minimal type derivations, called tight. Moreover, using appropriate
refined tight systems it is also possible to obtain independent measures (called
split exact measures) for length and for size. More precisely, the quantitative
typing systems are now equipped with constants and counters, together with an
appropriate notion of tightness, which encodes minimality of type derivations.
For any tight type derivation @ of a program ¢ with counters b and d, it is now
possible to show that ¢ evaluates to a normal form of size d in exactly b steps.
Therefore, the type system is not only sound, i.e. it is able to guess the number
of steps to normal form as well as the size of this normal form, but the opposite
direction providing completeness of the approach also holds.

Contribution. The focus of this paper is on effectful computations such as
reading and writing on a global memory. Taking inspiration from the monadic



approach adopted in [I3], we design a tight quantitative type system that pro-
vides split exact measures. More precisely, our system is not only capable of
discriminating between length of evaluation to normal form and size of the nor-
mal form, but the measure corresponding to the length of the evaluation is split
into two different integers: the first one corresponds to the length of standard
computation (S-reduction) and the second one to the number of memory ac-
cesses. We show that the system is sound i.e. for any tight type derivation @
of t ending with counters (b, m,d), the term ¢ is normalisable by performing b
evaluation steps and m memory accesses, yielding a normal form having size d.
The opposite direction, giving completeness of the model, is also proved.

In order to gradually present the material, we first develop the technique for
a weak (open) call-by-value (CBV) calculus, which can be seen as a contribution
per se, and then we encapsulate these preliminary ideas in the general framework
of the language with global state.

Summary. Sec. [2|illustrates the technique on a weak (open) CBV calculus.
We then lift the technique to the A-calculus with global state in Sec. [3| by follow-
ing the same methodology. More precisely, Sec. introduces the Ags-calculus,
Sec. defines a quantitative type system P. Soundness and completeness of P
w.r.t. A\gg are proved in Sec. We conclude and discuss related work in Sec. E}

Preliminary General Notations. We start with some general notations.
Given a (one-step) reduction relation —z, —»» denotes the reflexive-transitive
closure of —. We write t —® u for a reduction sequence from t to u of length b.
A term ¢ is said to be (1) in R-normal form (written ¢ 45 ) iff there is no u such
that t =% u, (2) R-weakly normalizing (written ¢ € WN(R)) iff there is some
R-nf u such that ¢ »% u, (3) R-strongly normalizing (written ¢ € SN (R))
iff there is no infinite R-reduction sequence starting at t. R is weakly (resp.
strongly) normalizing iff every term is R-weakly (resp. R-strongly) normalizing.

2 Weak Open CBV

In this section we first introduce the technique of tight typing on a simple lan-
guage without effects, the weak open CBV. Sec. defines the syntax and
operational semantics of the language, Sec. presents the tight typing system
O and discusses soundness and completeness of O w.r.t. the CBV language.

2.1 Syntax and Operational Semantics

Weak open CBV is based on two principles: reduction is weak (not performed
inside abstractions), and terms are open (may contain free variables). Value,
terms and weak contexts are given by the following grammars, respectively:

v,wn=1x | Azt tu,p=uv|tu Wea=0| Wt | tWw

We write Val for the set of all values. Notation I denotes the identity func-
tion Az.z. The sets of free and bound variables of terms and the notion of



a-conversion are defined as usual. A term ¢ is said to be closed if ¢ does not
contain any free variable, and open otherwise. The size of a term t, denoted
t], is given by: |z| = |A\z.t| = 0; and |tu| = 1 + |t]| + |u].

We now introduce the operational semantics of our language, which models
the core behavior of programming languages such as OCaml, where CBV eval-
uation is weak. Indeed, the deterministic reduction relation (written —), is
given by the following rules:

t—t tA  u—u
—————— () —"— (appL) " (appR
Ot Ha\e} st T
Terms in —-normal form can be characterized by the following grammars:
no ::=Val | ne and ne ::= x no | no ne | ne no.

Proposition 1. Lett be a term. Then t € no iff t / no.

In closed CBV [27] (only reducing closed terms), abstractions are the only
normal forms, but in open CBV, the following terms turn out to be also accept-
able normal forms: zy, x(Ay.y(A\z.z)) and (Az.z)(y(Az.2)).

2.2 A Quantitative Type System for the Weak Open CBV

The untyped A-calculus can be interpreted as a typed calculus with a single type
D, where D = D = D [29]. Applying Girard’s [I8] boring CBV translation of
intuitionistic logic into linear logic, we get D = !D —o !D [1]. Type system O is
built having this equation in mind.

The set of types is given by the following grammar:

(Tight Constants) tt :==v|a|n

(Value Types) cu=v|ialM|M=r71
(Multi-Types) M = [0;]icr where [ is a finite set
(Types) Ti=nlo

Tight types are minimal types assigned to terms reducing to normal forms (v
for variables, a for abstractions, and n for neutral terms). Given an arbitrary tight
type ttg, we write ttg to denote all the other tight types in tt different from ttg.
Multi-types are multisets of types. A (typing) environment, written I, A, is
a function from variables to multi-types, assigning the empty multi-type [] to all
but a finite set of variables. The domain of I" is dom(I") := {z | I'(z) # []|}. The
union of environments, written I"' + A, is defined by (I"+ A)(z) = I'(x) U A(x),
where LI denotes multiset union. An example is (z : [o1],y : [02]) + (z : [01], 2 :
[02]) = (x : [01,01],y : [02], 2 : [02]). This notion is extended to a finite union of
environments, written +;c7I; (the empty environment is obtained when I = ().
We write I' \z for the environment (I' \z)(x) = [] and (I" \z)(y) = I'(y) if
y # x and we write I';x : M for I' + (z : M), when x ¢ dom(I"). Notice that I"
and I';x : [] are the same environment.

A judgement has the form I F(**) t : 7 where b, s are two integers. The
typing system O is defined by the rules in Fig. [Il We write oI" %) ¢ : 7 if



there is a (tree) type derivation of the judgement I" F®*) ¢ : 7 using the rules
of system O. The term t is O-typable (we may omit the name O) iff there is
an environment I'; a type 7 and counters (b, s) such that >I" F®:5) ¢ : 7. We use
letters @, ¥, ... to name type derivations, by writing for example 1" %) ¢ : 7.
Notice that in rule (ax) of Fig. [1| variables can only be assigned value types o

(b,8) ¢ .
(ax) It t:T )

z:[o]FO g0 I'\z+®) \g.t: D(z) =7

FE®D M7 ARYSD 4o M (I F") v 0i)ier
(@) ()

4 ApRQHobstsh 4 7 Frierly Fhietbiticrsd o [o],q

(%)

FOD \gt:a

TE® g3 ARC) gt TH®® ¢ gy AFCD g
(@p1) (@p2)

I+ A FoFb 1sts’) 4y p '+ A oAb 1tsts’) g

Fig. 1. Typing Rules of system O

(in particular no type n): this is because they can only be substituted by values.
Due to this fact, multi-types only contain value types. Regarding typing rules
(ax), (A), (@), and (m), they are the usual rules for non-idempotent intersection
types [7]. Rules (X\p), (@p1), and (@p2) are used to type persistent symbols, i.e.
symbols that are not going to be consumed during evaluation. More specifically,
rule (\p) types abstractions (with type a) that are normal regardless of the
typability of its body. Rule (@) types applications that will never reduce to
an abstraction on the left (thus of any tight type that is not a, i.e. &), while
any term reducing to a normal form is allowed on the right (of tight type tt).
Rule (@p2) also types applications, but when values will never be obtained on
the right (only neutral terms of type n). Rule (ax) is also used to type persistent
variables, in particular when o € {v,a}.

A type 7 is tight if 7 € tt. We write tight(M), if every o € M is tight. A
type environment [ is tight if it assigns tight multi-types to all variables. A
type derivation &> I' (%) ¢ : 7 is tight if I" and 7 are both tight.

Ezample 1. Let t = (Az.2(yz))(Az.z). Let @ be the following typing derivation:

(ax) y: [ FOO gy (o) 2] FOO 20y EZX))
z:[a]FO z:a y:[v],z: [v]FOY yz:n "
(Cp2)

z:[a),y:[v],z: [v]FOD z(yz) :n

()

y:[v],z: [v] FOD \z.z(yz) : [a] = n



Then, we can build the following tight typing derivation @, for ¢:

(%)
(m)

FOO Nz2:a
& OO Nz z:a]
y:[v],z: [v]F&? Az.z(yz))(Az.2) :n

(@)

The type system O can be shown to be sound and complete w.r.t. the oper-
ational semantics —. Soundness means that not only a tightly typable term ¢ is
terminating, but also that the tight type derivation of ¢ gives exact and split mea-
sures concerning the reduction sequence from ¢ to normal form. More precisely,
if &> 1" (%) ¢ : 7 is tight, then there exists u € no such that ¢t —° u with |u| = s.
Dually for completeness. Because we are going to show this kind of properties for
the more sophisticated language with global state (Sec. , we do not give here
technical details of them. However, we highlight these properties on our previous
example. Consider again term ¢ in Ex.[I]and its tight derivation &; with counters
(b,s) = (1,2). Counter b is different from 0, so ¢ ¢ no, but ¢ normalizes in one
By-step (b= 1) to a normal form having size s = 2 = |(Az.2)(yz)|.

3 A )X-Calculus with Global State

Based on the preliminary presentation of Sec. [2, we now introduce a A-calculus
with global state following a CBV strategy. Sec. defines the syntax and
operational semantics of the A-calculus with global state. Sec. presents the
tight typing system P, and Sec. shows soundness and completeness.

3.1 Syntax and Operational Semantics

Values, terms, states and configurations of A5 are defined resp. as follows:

v,w = | Azt t,u,pu=uv|vt|get;(\v.t) | set;(v,t)
$,q := € | upd,(v,t) c = (t,s)

Notice that applications are restricted to the form wt. This, combined with
the use of a deterministic reduction strategy based on weak contexts, ensures
that composition of effects is well behaved. Indeed, this kind of restriction is
usual in computational calculi [26128/T3I16].

The size function is extended to states and configurations: |s| := 0, and
[(t,s)] ;= [t|. The update constructor is commutative in the following sense:

upd, (v, upd;, (w, s)) =c upd,, (w, upd, (v, s)) if { # '

We denote by = the equivalence relation generated by the axiom =.. We write
I € dom(s), if s = upd,(v,q), for some value v and store ¢q. Moreover, these v
and q are unique. For example, if Iy # Iy, then s; = upd; (vi,upd,, (vz2,q))
upd,, (ve,upd,, (v1,q)) = s2, but upd, (vi,upd;, (ve,s)) # upd;, (va,upd, (s,)). As



a consequence, whenever we want to access the content of a particular location
in a state, we can simply assume that the location is at the top of the state.

The operational semantics of the Agg-calculus is given on configurations. The
deterministic reduction relation — is defined to be the union of the rules
—r (r € {By,g,s}) below. We write (¢, s) —®™) (u,q) if (¢, s) reduces to (u,q)
in b B,-steps and m g/s-steps.

s = upd, (v, q)
(Catos) —m Havohs) (got,(\i-t), 5) —rg (H{a\0}, 5) (get)
(t7 S) —r (u,q) re {Bv7g’ S} se
(vt, s) == (vu,q) (appR) (seti(v,t),8) = (t,upd, (v, s)) (set)

Ezxample 2. Consider the configuration ¢y = ((Az.get;(Ay.yzx))(seti(I,2)),¢€).
Then we can reach an irreducible configuration as follows:

((Az.get; (Ay.yz))(seti(I, 2)), €) —¢ ((Az-get;(Ay.yz))z, upd, (I, €))
By (getl(ky-y‘z%updl(lve)) —g (Iz7updl(I7€)) By (Zvupdl(Le))

A configuration (t, s) is said to be blocked if either ¢ = get,;(Az.u) and [ ¢
dom(s); or t = vu and (u, s) is blocked. A configuration is unblocked if it is not
blocked. As an example, (get,(Az.z),€) is obviously blocked. As a consequence,
the following configuration reduces to a blocked one: ((Ay.y get,(Az.z))z,€) —
(z get;(Az.x),€). This suggest a notion of final configuration: (¢, s) is final if
either (t,s) is blocked; or ¢ € no, where neutral and normal terms are given
resp. by the grammars ne ::= z no | (Az.t) ne and no ::= Val | ne.

Proposition 2. Let (t,s) be a configuration. Then (t,s) is final iff (t,s) /.

Notice that when (¢, s) is an unblocked final configuration, then ¢ € no. These
are the configurations captured by the typing system P in Sec. Consider the
final configurations ¢y = (get;(Az.x),€), c1 = (2 get;(A\x.x),¢€), co = (y,s) and
cs = (Az.x)(yz), s). Then ¢y and ¢y are blocked, while ¢o and ¢z are unblocked.

3.2 A Quantitative Type System for the \zs-calculus

We now introduce the quantitative type system P for Az. To deal with global
states, we extend the language of types with the notions of state, configuration
and monadic types. To do this, we translate linear arrow types according to
Moggi’s [26] CBV interpretation of reflexive objects in the category of A.-models:
D =1D — |D becomes D =D — T(!D), where T' a functor. Type system P
was built having this equation in mind, similarly to what was done in [I7].

The set of types is given by the following grammar:

(Tight Constants) ttu=v|a|n

(Value Types) t=vla|M|M=$

(Multi-types) = [0i]icr where I is a finite set
(Types) s=nlo

(State Types) = {(l; : M;)}ier where all I; are distinct
(Configuration Types) k:=7xS§

(Monadic Types) =8>k

(I zq



In system P, the minimal types to be assigned to normal forms distinguish
between variables (v), abstractions (a), and neutral terms (n). A multi-type is
a multi-set of value types. A state type is a partial function mapping labels to
(possibly empty) multi-types. A configuration type is a product type, where
the first component is a type and the second is a state type. A monadic type
associates a state type to a configuration type. We use the notation 7 to denote
a value type or a monadic type. Typing environments and operations over
types are defined in the same way as in system O.

The domain of a state type S is the set of all its labels, i.e. dom(S) := {I |
(I1: M) € 8}. Also, when [ € dom(S), i.e. (I: M) € S, we write S(I) to denote
M. The union of state types is defined as follows:

(SWS(1) =if (I: M) € S then (if (I : M) € S’ then MU M’ else M)
else (if (I : M') € 8’ then M’ else undefined)

Ea:ample 3. Let S = {(11 : [0'1702]), (12 : [O’l})} Y {(ZQ : [01,02]), (13 : [0'3])}
Then, S(11) = [01,02], S(l2) = [01,01,032], S(I3) = [o3], and S(I) = undefined,
assuming [ # I;, for ¢ € {1,2,3}.

Remark 1. Notice that dom(S U S’) = dom(S) U dom(S’). Also {(I : [])} US #
S, if I & dom(S), while = : [|;I" = I'. Indeed, typing environments are total
functions, where variables mapped to [] do not occur in typed programs. In
contrast, states are partial functions, where labels mapped to [] correspond to
positions in memory that are accessed (by get or set), but ignored/discarded by

the typed program. We use {(I: M)};S for {(I : M)} US if | & dom(S).

A term type judgement (resp. state type judgment and configuration
type judgment) has the form I' F®™4 ¢ . T (resp. I' F&™4d 5 : S and
I F&md) (¢ 5) : k) where b,m,d are three integers. The typing system P
is defined by the rules in Fig. We write >J if there is a type derivation
of the judgement J using the rules of system P. The term ¢ (resp. state s,
configuration (t, s)) is P-typable iff there is an environment I'; a type 7T (resp.
S, k) and counters (b, m,d) such that >I" F®™d ¢ . T (resp. oI FO™d) 5. S,
s H®md) (¢ 5) : k). As before, we use letters @, ¥, ... to name type derivations.

Rules (ax), (A), (m), and (@) are essentially the same as in Fig. I} but with
types lifted to monadic types (i.e. decorated with state types). Rule (@) assumes
a value type associated to a value v on the left premise and a monadic type
associated to a term t on the right premise. To type the application vt, it is
necessary to match both the value type M inside the type of ¢ with the input
value type of v, and the output state type S’ of ¢ with the input state type of
v. Rule (1) is used to lift multi-types (the type of values) to monadic types.
Rules (get) and (set) are used to type operations over the state. While there
was just one single typing rule in system O (Sec. to type both consuming
and persistent variables, we now need to add an explicit persistent rule (ax;) to
type variables with lifted type S > (& x S). Rule (emp) types empty states, rule
(upd) types states, and (conf) types configurations.

A type 7 is tight, if 7 € tt. We write tight(M) if every o € M is tight. A
state type S is tight if tight(S(1)) holds for all I € dom(S). A configuration



type 7 x S is tight, if 7 and S are tight. A monadic type S > & is tight, if
is tight. The notion of tightness of type derivations is defined in the same way
as in system O, i.e. a type derivation @ is tight if the type environment and
the type of the conclusion of @ are tight.

Ezample j. Consider configuration ¢y from Ex. [2| Let 6o = 0 > (v x ), M =
[[v] = do], and @ be the following typing derivation:

(ax)
z: [v] FOO0) gy
(m)
x: [v] FOO0) g [v]
(ax) )
y: MEOO - y] = 5 z: [v] FO00 20> ([v] x 0) (©
y: M,z [v] FO00 gz - 5 (get)
ge
O g O (M) > 3 0)
AL Az get, (Ay.yz) : [v] = ({(1: M)} > (v x 0))
And &’ be the following typing derivation:
(ax,) (ax)
x: [v] FOO0) g2 g, i z: W] FO00) 5y ()
m
FO0.0 1 [v] = & z: [v] OO0 2 [v]
(m) ™M
F©0.0) 1. M 2 ] OO0 2 L1 M)} > ([v] x {(1: M)}) (set)
set
z: ] FOLO sety(1,2) : 0> ([v] x {(I: M)})
Then we can build the following tight typing derivation &, for c:
o 9
(@ ———— (emp)
z: [v] FE20 (Az.get,(A\y.yx))(seti(I, 2)) : do z:[v] FOOD ¢
(conf)

2 [v] FO20 (z.get,(\y.yz)) (set (I, 2)),€) : v x 0
We will come back to this example at the end of Sec.

3.3 Soundness and Completeness

In this section we show the main properties of the type system P with respect
to the operational semantics of the A-calculus with global state. The proper-
ties of type system P are similar to the ones for O, but now with respect to
configurations instead of terms. Soundness does not only state that a (tightly)
typable configuration (¢, s) is terminating, but also gives exact (and split) mea-
sures concerning the reduction sequence from (%, s) to a final form. Completeness
guarantees that a terminating configuration (t,s) is tightly typable, where the
measures of the associated reduction sequence of (¢, s) to final form are reflected
in the counters of the resulting type derivation of (¢,s). This is the first work
providing a model for a language with global memory being able to count the
number of memory accesses.

We start by noting that type system P does not type blocked configurations,
which is exactly the notion that we want to capture.



10

Rules for Terms

(b,m,d) .
(ax) F l_ v M
z:[o] FOOD 30 rEemd S (MxS)

rECmd .S ) ([ FComadi) 4 gy) e ()
m
I'\z ™D et : D(z) = (S>> k) tier Iy Frierbitiermaticrdd) o - [gy]5c

rEemd p M= (8 >r) AR 8> (M xS
'+ A pAFoFb s mtm’ dtd) oy g >k
rEemd ¢ Ss g
I\z FOF™D get (A\zt) : {(1: Nz))}US > K

(@)

(get)

[ E®md) Ay ARQmd) g {I: M)}, S>k (
I 4+ A RO+ 1dmtm’ d+d) set;(v,t) : S>>k

set)

000 (axp) 000 (Ap)
z:[@ FO 28> @xS) FO00 Nt : S>> (ax S)

rEE™D S s (1t x S) o rEEmd 4 S s (nx S)
pl
(z:[v]) + T FE™IHD 21 S>> (n x S) rEEmIHD gty : S>> (nx S)
Rules for States

(@p2)

T F(b,nb,d) v: M A '*(b/’ﬂbl’d/) s:S
oo g temp) — : (upd)
OO e 0 [+ ApOHmambdtd) yoq (v, 5) : {(1: M)}; S

Rule for Configurations

FEOmD ¢ Sy ARG M) o g
(conf)

[+ A ot mtm’.d+d) (t,s): kK

Fig. 2. Typing rules for Ags.

Proposition 3. If &> I' 04 (t5) 1 k, then (t,s) is unblocked.

We also show that counters capture the notion of normal form correctly, both
for terms and states.

Lemma 1.

1. Let & ' HO04) ¢ § be tight. Then, (1)t € no and (2) d = |t|.
2. Let & A 004 5 S be tight. Then d = 0.

In fact, we can show the following stronger property with respect to the
counters for the number of 3,- and g/s-steps.

Lemma 2. Let &> '+ ¢ . 5 be tight. Then, b=m =0 iff t € no.
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The following property is essential for tight type systems [2], and it shows
that tightness of types spreads throughout type derivations of neutral terms,
just as long as the environments are tight.

Lemma 3 (Tight Spreading). Let &> F®™d t: 8> (1 x &), such that
I is tight. If t € ne, then T € tt.

The two following properties ensure tight typability of final configurations.
For that we need to be able to tightly type any state, as well as any normal
form. In fact, normal forms do not depend on a particular state since they are
irreducible, so we can type them with any state type.

Lemma 4 (Typability of States and Normal Forms).

1. Let s be a state. Then, there exists & > (000 5. S tight.
2. Let t € no. Then for any tight S there exists d> T ™D ¢ : S>> (tt x S)
tight s.t. d = |t|.

Finally, we state the usual basic properties.
Lemma 5 (Substitution and Anti-Substitution).

1. (Substitution) If ;> Iy;x: M EOmed) 2§ and @, > T, Fbemedo) 4
M, then @iy > Iy + T, F(betbumetmyditd) 10\ g} 2 6.

2. (Anti-Substitution) If ;) > ey O™ t{z\v} : 6, then &> I} a
M FOumedd 5 gnd &> T, FOvmode) 4 0 M such that Loy = Li + 1y,
b="0b;+b,, m=m¢ +my, and d = dy + d,,.

Lemma 6 (Split Exact Subject Reduction and Expansion).

1. (Subject Reduction) Let (t,s) —, (u,q). If > T O™ (¢ 5) : k is
tight, then & > I +®"m"d) (u,q) : Kk, where r = 8 implies ¥’ = b —1 and
m’ =m, while r € {g,s} implies ¥’ =b and m' =m — 1.

2. (Subject Expansion) Let (t,s) —; (u,q). If & > I FOmd (4 q) : k
is tight, then ® > I O™ (t 5) : ki, where r = B implies V' = b— 1 and
m’ =m, while r € {g, s} implies ¥’ =b and m' =m — 1.

Soundness (resp. completeness) is based on exact subject reduction (resp.
expansion) respectively, in turn based on the previous substitution (resp. anti-
substitution) lemma.

Theorem 1 (Quantitative Soundness and Completeness).

1. (Soundness) If o1 FmD (¢ s) : K tight, then there exists (u, q) such that
u € no and (t,s) —®"™) (u,q) with b B-steps, m g/s-steps, and |(u,q)| = d.

2. (Completeness) If (t,s) -9 (u,q) and u € no, then there exists & >
I O lwal) (ts) . g tight.

Ezxample 5. Consider again configuration ¢y from Ex. [2] and its associated tight
derivation @.,. The first two counters of @, are different from 0: this means that
¢ is not a final configuration, but normalizes in one S,-step (b = 1) and two g/s-
steps (m = 2), to a final configuration having size d = 0 = |z| = |(z, upd, (I, €))].
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4 Conclusion and Related Work

This paper provides a foundational step into the development of quantitative
models for programming languages with effects. We focus on a simple language
with global memory access capabilities. Due to the inherent lack of confluence in
such framework we fix a particular evaluation strategy following a (weak) CBV
approach. We provide a type system for our language that is able to (both)
extract and discriminate between (exact) measures for the length of evaluation,
number of memory accesses and size of normal forms. This study provides a
valuable insight into time and space analysis of languages with global memory.

In future work we would like to explore effectful computations involving
global memory in a more general framework being able to capture different
models of computation, such as the CBPV [24] or the bang calculus [6]. Further-
more, we would like to apply our quantitative techniques to other effects that
can be found in programming languages, such as non-termination, exceptions,
non-determinism, I/0.

Related Work. Several papers proposed quantitative approaches for dif-
ferent notions of CBV (without effects). But none of them exploits the idea of
exact and split tight typing. Indeed, the first non-idempotent intersection type
system for Plotkin’s CBV is [15], where reduction is allowed under abstractions,
and terms are considered to be closed. This work was further extended to [§],
where commutation rules are added to the calculus. None of these contributions
extracts quantitative bounds from the type derivations. A calculus for open CBV
is proposed in [3], where fireball normal forms— can be either erased or dupli-
cated. Quantitative results are obtained, but no split measures. Other similar
approaches appear in [19]. A logical characterization of CBV solvability is given
in [4], the resulting non-impotent system gives quantitative information of the
solvable associated reduction relation. A similar notion of solvability for CBV
for generalized applications was studied in [22], together with a logical charac-
terization provided by a quantitative system. Other non-idempotent systems for
CBV were proposed [25/21], but they are defective in the sense that they do not
enjoy subject reduction and expansion. Split measures for (strong) open CBV
are developed in [23].

In [14], a system with universally quantified intersection and reference types
is introduced for a language belonging to the ML-family. However, intersections
are idempotent and only (qualitative) soundness is proved.

Concerning (exact) quantitative models for programming languages with
global state the state of the art is still underexplored. Some sound but not com-
plete approaches are given in [BII2], and quantitative results are not provided.
Our work is inspired by a recent idempotent (thus only qualitative and not quan-
titative) model for CBV with global memory proposed by [I3]. This work was
further extended in [I7] to a more generic framework of algebraic effectful com-
putation, still the model does not provide any quantitative information about
the evaluation of programs and the size of their results.
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2. t A iff t € no.
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=) By induction over ¢:
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e Case t = up. Since up +, then, in particular, it must be the case
that either —abs(u) or —val(p) must hold, according to rule (53,):

* Assume —abs(u) holds. It must be the case that u /4, according
to rule (appL). And it also must be the case that p /4, according
to rule (appR). Therefore, p € no, by the i.h. (Prop. . Now,
we have to consider u, which can be a variable, or not:
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- Case u = z. Then up € = no € ne.
- Case u is not a variable. Then —val(u) holds. Therefore, we
have u € ne, by the i.h. (Prop. . Thus, up € ne no € ne.

* Assume —val(p) holds. Then it must be the case that u -,
according to rule (appL). And that p /4, according to rule (appR).
Therefore, u € no, by the i.h. , and p € ne, by the i.h.
(Prop. . Thus, up € no ne € ne.

2. Let t /. We want to show that ¢ € no:

e Case t € Val. Then, clearly ¢ € no.

e Case t ¢ Val. Then, —wval(t) holds. Therefore, ¢t € ne, by Prop.
Thus, in particular, t € no.

<) By induction over ¢ € no:
1. Let ¢ € ne. We want to show that ¢ /4 and —val(t):

e Caset =up € x no. Then u = x and p € no. Since u = z, then both
rules (8y) and (appL) cannot be applied. Since p € no, then p /4, by
the i.h. (Prop. [[2). Therefore, rule (appR) also cannot be applied.
Thus, up 4. And we can conclude, since —val(up) clearly holds.

e Case t = up € no ne. Then v € no and p € ne. Since u € no, then
u #, by the i.h. (Prop. Since p € ne, then p 4 and —val(p)
holds, by the i.h. (Prop. [U][l). Since —val(p), then rule (3,) cannot
be applied. Since u 4 and p #, then rules (appL) and (appR) cannot
be applied. Therefore, up 4. And we can conclude since —val(up)
clearly holds.

e Case t = up € ne no. Then v € ne and p € ne. Since u € ne, then
u # and —val(u) holds, by the i.h. (Prop. . Since p € no, then
p #, by the i.h. (Prop.[I]2). Since —val(u), then rule (3,) cannot be
applied. Since u 4 and p #, then rules (appL) and (appR) cannot
be applied. Therefore up 4. And we can conclude since —wval(up)
clearly holds.

2. Let t € no. We want to show that t /4
e Case t € Val. Then, clearly t /.
e Case t ¢ Val. Then, t € ne, by definition. Thus, ¢ - holds,

by Prop.
Lemma 7 (Relevance). Let &' %) t . 7. Then dom(I") C fv(t).
Proof. The proof following by induction over @. Case ¢ ends with rule (ax) or

(Ap), then @ is clearly relevant. The other cases following easily from the i.h..

Soundness (Auxiliary Lemmas)
Lemma 8. Let &1+ ¢ : 7. Ift € Val, then T # n.
Proof. By case analysis on the form of ¢ € Val:

— Case t = x. Then we have to consider two additional cases according to the
last rule used in @:
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e Case @ ends with rule (ax), then 7 is of the form o # n.
e Case @ ends with rule (m), then 7 is of the form M # n.
— Case t = Azx.t. Then we have to consider three additional cases according to
the last rule used in @:
e Case @ ends with rule (A), then 7 is of the form M = § # n.
e Case @ ends with rule (m), then 7 is of the form M # n.
e Case ¢ ends with rule (\p), then 7 = a # n.

Lemma 9. If & I' ) t . 7 such that I is tight. If T € &, then —abs(t).

Proof. By induction over &:

— Case ¢ ends with rule (ax), (@), (@p1), or (@), —abs(t) holds by definition.
— Case @ ends with rule (X), (m), or (A\p), 7 & a. Therefore, these cases do not
apply.

Lemma 10 (Zero Steps and Normal Forms). Let 1" %) t: 1 be tight.
b=0 iff t € no.

Proof.

=) We want to show that, if b = 0, then ¢ € no. For this, we are going to split
the original statement into the two following ones:
1. Let & I' F(0%) ¢ : 7 be tight and —wval(t), then ¢ € ne.
2. Let &> I' H%) ¢ : 7 be tight, then t € no.
The proof now follows by simultaneous induction over both these statements:
1. Let & T (%) ¢ : 7 be tight and —val(t):
e Case ¢ ends with rule (ax), (A), (m), or (Ap), then val(t) holds.
Therefore, these cases do not apply.
e Case @ ends with rule (@), then b > 0. Therefore, this case does not
apply.
e Case @ ends with rule (@), then ¢ is of the form up and @ is of the
following form:

G >, FOsu) .7 b, 1, FOs0) s tt

@
Tyt I, FOFsuts) 0 p (1)

where 7 =n, I' = I, + I}, is tight, and s = 1 + s, + s,. Moreover,
I', and I, are tight. By the i.h. (Lemma over ¢, and ¢, we
have that u,p € no. By Lemma [9 we have that —abs(u). Therefore,
either u is a variable or u € ne by definition. So, in both cases, we
can conclude that up € ne.

e Case ¢ ends with rule (@), then ¢ is of the form up and @ is of the
following form:

G, L FOsD witt @I, HO) pin
I, + 1, FO1+sutsp) 4 i n

@p2)
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where 7 =n, I' = I, + I}, and s = 1 + s, + s,. Moreover, I},
and I}, are tight. By the i.h. (Lemma over ¢, we have that
u € no. By applying Lemma [§ to &,, we have that —val(p). By the
i.h. (Lemma over @,, we have that p € ne. So, in both cases,
we can conclude that up € ne.
2. Let &1 1" H05) ¢ : 7 be tight:
e Case @ ends with rule (ax), (A), or (Ap). Then, clearly ¢ € Val, so
we can conclude immediately.
e Case @ ends with rule (m), then 7 is of the form M ¢ tt. Therefore,
this case does not apply.
e In all the remaining cases —val(t) holds. Then ¢ € ne, by Lemma
so t € no.
<) We want to show that, if ¢ € no, then b = 0. The proof follows by induction
over ¢ € no:
1. Case t € ne. Then we have to consider the following additional cases:
e Case t = xp, such that p € no. Then there are three additional cases
to consider:
x Case @ ends with (@), then it must be of the following form:

r:M=1FOY s M=1 @I, Fles) pi M
(x: [ M=7])+ [, FOFsp) gp 2 7

(@)

where I' = (z : [M = 7]) + I}, is tight, b = 1+ by, and s = s,,.
But, [M = 7] is not tight, since M = 7 ¢ tt. Therefore, this
case does apply.

* Case @ ends with (@), then @ must be of the following form:

(z: W) FOD 2y @, T, FOeb) ptt
[+ T, Fpltsutsn) yp . n

(@pl)

where 7 =n, I = (x : [v])+1}, is tight, b = b,, and s = 1435, +s5,.
Moreover, I, is tight. By the i.h. over &, we have that b, = 0.
So we can conclude with b = b, + b, = 0.

* Case @ ends with (@y2). This case is very similar to the case
where @ ends with rule (@p1).

e Case t = up, such that u € no and p € ne. Then there are three
additional cases to consider:
* Case @ ends with (@), then it must be of the following form:

Fu l_(buvsu) u: M =T ép > Fp l_(b:mSp) D: M

[y + T, FOtbutbpsutsy) g - 7

(@)

where 7 =7, ' = I, +1}, is tight, b = 14+-b,,+b,,, and s = 5, +5).
By Lemma we have that M € tt, which is a contradiction.
Therefore, this case does not apply.
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* Case @ ends with (@p;) or (@py). These cases are very similar to
the corresponding cases when ¢ = zp, such that p € no.
e Case t = up, such that u € ne and p € no. Then there are three cases
to consider:
* Case @ ends with (@), then it must be of the following form:

L, FCws) gy M=1 @, T, FOese) pi M

Ty + I FOtbutbnsutss) yp ;-

(@

where 7 = 7, I' = I, +1}, is tight, b = 1+b, +bp, and s = 5, +5p.
By Lemma over u € ne, we have that M = 7 € tt, which
is a contradiction. Therefore, this case does not apply.

* Case @ ends with (@p;) or (@py). These cases are very similar to
corresponding cases when ¢ = xp, such that p € no, or t = up,
such that u € no and p € ne.

2. Case t € no. Then we can consider the two following additional cases:

e Caset € Val. Then ¢ must end with (ax), (A), (m), or (A). With the
exception of the case where @ ends with rule (m), we can conclude
b = 0 immediately for every other case, by definition. Case @ ends
with rule (m), then 7 is of the form M ¢ tt. Therefore, this case
does not apply.

e Case t ¢ Val. Then, t € ne, by definition. Therefore, b = 0, by
Lemma

Lemma 11. Let & I'=%) t . 7 be tight. If b= 0 then s = |t|.

Proof. The proof follows by induction over @:

Case @ ends with rule (ax) or (X\;). Then ¢ € Val and s = 0. So we can
conclude with [t| =0 = s.

Case @ ends with rule (A). Then 7 is of the form I'y(x) = 0 € tt, so this
case does not apply.

Case @ ends with rule (@). Then b > 0, so this case does not apply.

Case @ ends with rule (m). Then 7 is of the form M ¢ tt, so this case does
not apply.

Case @ ends with rule (@,1). Then ¢t = up and & must be of the following

form:
Gy > T, O ya @, I, FOse) pitt

I, + 1 FO14sutsp) yp - n

where 7 =n, I' = I, + I}, and s = 1 + s, + s,. Moreover, I, and I}, are
tight. By the i.h. over &, and &, we have s, = |u| and s, = |p|. So we can
conclude with s = 1+ |u] + |p| = |up|.

Case @ ends with rule (@p,). This case is very similar to the case where @
ends with rule (@p;).

1)

Lemma 12 (Split for Values). Let &, > 1" F®) v : M, such that M =
UserM;. Then, there exist (@) > Iy %) v 0 My)icr, such that I' = 41T},
b= +4icrbi, and s = +¢715;-



20

Proof. We start by noting that @, must end with the rule (m). Therefore, we
have I' = +jc 1, M = [O’j]jEJ, b= +jcsbj, s =+jcss;5, and (@%Dpj F5:55) 4
0;)jer, for some J. Let M; = [ox]rek,, for each i € I, such that J = +,¢1 K.
Then, by using rule (m), we can build & > I; (%) v : M,, for each i € I,
such that I; = +xer, Lk, bi = +rek,br, and s; = +rek, sk. So we can conclude
with I' = +je 1 = +ier(frer, [k) = ‘ierli, b= +jesbj = +ticr(frer,br) =
+icrbi, and s = +jey8; = +icr(+rek, Sk) = Ficrsi.

Completeness (Auxiliary Lemmas)
Lemma 13 (Tight Spreading). Let &I "% t: 7, such that I' is tight:

1. If b=0 and 7 is not an arrow type or a multi-type, then T € tt.
2. Ift € ne, then T € tt.

Proof.

1. We want to show that, if b = 0 and 7 is not an arrow type or a multiset
type, then 7 € tt. The proof follows by induction over @:
— Case @ ends with rule (ax), then it is of the following form:

(ax)

z: o] FOO 2 o

such that 7 =0, I' =z : [0], and s = 0. If = : [o] is tight, then ¢ € {a, v}.
Therefore, we can conclude with o € {a,v} C tt.

— Case @ ends with rule (\), then 7 is an arrow type. Therefore, this case
does not apply.

— Case @ ends with rule (@), then b > 0. Therefore, this case does not
apply.

— Case @ ends with rule (m), then 7 is a multiset type. Therefore, this case
does not apply.

— Case ¢ ends with rule ()p), then 7 = a € tt.

— Case ¢ ends with rules (@) or (@), then 7 =n € tt.

2. We want to show that, if ¢ € ne, then 7 € tt. By induction over ¢ € ne:

— Case t = xp, such that p € no. Then we have to consider the following

three cases depending on the last rule in &:
e Case @ ends with rule (@), then it must be of the following form:

r:M=1FOD 2 M=6§ @, T, FOFbese) po M
(x:M=7))+ T, Flrse) gp . §

(@)

where I' = (z : [M = §]) + I}, is tight, b =1+ b,, and s = s,,. But,
[M = 4] is not tight, since M = § ¢ tt. Therefore, this case does
apply.

e Case ¢ ends with rule (@) or (@p). Then 7 = n € tt, so we can
conclude immediately.
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— Case t = up, such that 4 € no and p € ne. Then we have to consider the
following three cases depending on the last rule in @:
e Case @ ends with rule (@), then it must be of the following form:

&, 1, |—(b“”s“’) u:M=T gﬁp > Fp l—(b;msp) p: M

[y + I, FOFbutbpsutss) g - 7

(@)

where I' = I, + 1, is tight, b = 1+b,,+0b,, and s = s,,+5,. Moreover,
I, is tight. By the i.h. over @, we have that M € tt, which is a
contradiction. Therefore, this case does not apply.
e Case ¢ ends with rule (@p) or (@p,). Then 7 = n € tt, so we can
conclude immediately.
— Case t = up, such that v € ne and p € no. Then we have to consider the
following three cases depending on the last rule in @:
e Case @ ends with rule (@), then it must be of the following form:

Gy > Ly FOws) s M =7 By I, FOs) p M

I, + 1, Ftbutbpsutsp) g 7

(@)

where I' = I, + 1, is tight, b = 1+b,,+b,, and s = s,,+s,. Moreover,
I, is tight. By the i.h. over @,, we have that M € tt, which is a
contradiction. Therefore, this case does not apply.

e Case ¢ ends with rule (@) or (@p). Then 7 = n € tt, so we can
conclude immediately.

Lemma 14 (Typability of Normal Forms). If¢ € no, then there exists a
tight derivation @I F®) t . 7 such that s = |t|.

To show this proposition we are going to need to split the original statement
into the two following ones:

1. If t € ne, then there exists a tight derivation &> I" F(®%) ¢ : n such that
s =[]

2. If t € no, then there exists a tight derivation @ I" %) ¢ : tt, such that
s =t

The proof follows by simultaneous induction over both these statements:

1. Let t € ne. We want to show that there exists a tight derivation @ I" F(®-5)
t:n:
— Case t = up € x no. Then u = x and p € no. Therefore, there exists a
tight derivation &, > I}, Fposp) p 2 tt, by the i.h. (Lemma , such
that |p| = sp. Thus, we can build @ as follows:

(ax)
z: [v]FOO gy @, T, FOse) p gt

(©p1)

x:[v] + I, FCel+se) gpin

And we can conclude with I' =z : [v] + I}, b=10,, and s =1+ s, =
L+ [z| + [p| = |ap].
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2.

— Case t = up € no ne. Then u € no and p € ne. Therefore, there exists
a tight derivation @, > I, F(®«%«) 4 : tt, such that |u| = s,, by the i.h.
(Lemma , and there exists a tight derivation &, > I, Fpsp) - n,
such that [p[ = s, by the i.h. (Lemma [T4]1). Thus, we can build ¢ as
follows:

b, 1, F(bussu) 4 - £t Qsp > Fp = (bp,sp) p:n
(@pﬁ)

[+ I, FOutbpddsutss) gy g

And we can conclude with I' = I, + 1}, b = by, +by, and s = 1+s,+5, =
1+ ful + |p| = [up].

— Case t = up € ne no. Then u € ne and p € no. Therefore, there exists
a tight derivation @, > I, F(»5«) 4 : n, such that |u| = s,, by the i.h.
(Lemma, and there exists a tight derivation @, > I, F®pose) p: 1t
such that |p| = sp, by the i.h. (Lemma . Thus, we can build @ as
follows:

Dy > Dy FOws) yin @, I, o) p gt

c]
Iy + T Fbutbeltsutsy) gy g (@)

And we can conclude with I" = I, +17,, b = b, +by, and s = 145, +5, =
1+ [ul + [p| = [up|.
Case t € no. We want to show that there exists a tight derivation @I (
t:tt:
— Case t = z. Then we can build @ as follows:

(ax)

b,s)

x: o] FOO0) 2 o

by picking ¢ € {a,v}. And we can conclude with I" = (), b = 0, and
s=0=|z|
— Case t = Az.u. Then we can build @ as follows:
_ (A
FOO) \pu:a ()
And we can conclude with I' =0, b = 0, and s = 0 = |Az.ul.
— The remaining cases are for when ¢ € ne, so they are subsumed by
previous cases.

Lemma 15 (Merge for Values). Let (&) > Ty 0% v : M;)ie;r. Then, there
exists B, > I FO%) v o M, such that I’ = 4,1, M = +ie1M;, b = +icrb;,
and s = +ieg-

Proof. We start by noting that each @ must end with the rule (m). Therefore,
for each ¢ € I, we have I} = +pecx, Ik, M; = [Uk]keKm such that b; = +rex, bk
and s; = +yeK, Sk, and the following derivations (®F > I F(Oks58) 4 Ok )keK;-
Let J = +ierK; and M = [0j]jes = [0klrek, ict- We can use rule (m) to
build @, > I' F(tiesbiticrsi) 4 . M. So we can conclude with I” = +iesl =
+icr(+trex. Ik) = +ierli, b = +jesbj = +icr(+rek,bx) = +ierbi, and s =
+icssj = +icr(+rek,sk) = +icrsi-
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Soundness and Completeness (Main Results)

Lemma 16 (Substitution and Anti-Substitution).

1. Let &y Iy M ECos) ¢ and &, > T, Fvs0) 42 M, then there exists
Dy > Lt + 1 (betbo,sitsn) ¢\ v} @ 7.

2. Let Qi) & i) F®9) t{z\v} : 7. Then, there exist &> Iy a0 M H06s0)
t:7 and &y L, HOw50) 4o M, such that Loy = Ly + Iy, b=by + by, and
S =8+ Sy.

Proof.

1. The proof follows by induction over &;:
— Case @, ends with rule (ax). Then ¢ must be a variable and we need to
consider two cases:
e Assume t =y = x. Then I, =0, 7 = M, t{z\v} = v, by = 0, and
s = 0. So we can take (Pt{i\v} = @, and conclude with I, + I, = I,
by + by, = by, and s; + 5, = Sy
e Assume t =y # x. Then M =[], I, = 0, t{z\v} = ¢, b, = 0, and
sy = 0. So we can take @,y = &; and conclude with I} + I, = I},
by + b, = by, and s + 5, = 5.
— Case @, ends with rule (\). Then ¢ must be of the form Ay.u and &,
must be of the following form (by a-conversion):

Gy >z MO g 7
(C'\y);x: M F®ese) Ay I'y)=1

()

where 7 = I'(y) = 7" and Iy = (I"\y). By the i.h., we have the following
derivation @,y > 1 + I, F(betbositse) Lo\ v} : 7. Therefore, we can
construct @y, as follows:

Py > I+ Ty Flebosetso) yfo\ v} o 7/
(I + L) \y FOrtbeserse) (\yu){a\v}: T(y) = 7/

()

And we can conclude with (I'+ I,) \y = ("' \w) + I, = I + I, by
a-conversion.

— Case @, ends with rule (@). Then ¢ must be of the form up and ®; must
be of the following form:

Dy Dyw: My FCws) y s M =7 Dy Aja s My FOese) p o M
(I 4+ A)yz: My U Mg FOHbutbpsutsp) gy - 7

(@)

where I} = (' + A), M = My UMy, by = 1+ b, + by, and s, =
Sy+5p. By Lemma we know there exist the following derivations (& >
i ®os) g M) ieq1,0y, such that I, = I} 4+ 172, b, = by + by, and s, =
$1+ s2. By the i.h., we know there exist 01 > 1"+ I p (butbi,sutsi)
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uf{z\v} : M' = 7 and B,y > A+ T2 Hletbasetse) pla\y} o M. So
we can construct @iy, as follows:

Py b L4 T FCutbrsuts) yla\o}: M =7 Dy b A4 T2 FOefbesetse) plo\ g} M/

(F—|— A) + (Fvl +F3) F(14bu+bp+bi+bz,sutsp+s1+s2) (up){x\v} T

And we can conclude with I}, + I, = (I'+ A) + (I} + I'?), by + b, =
1+by + by + b1 +bo, and s¢ + 5, = 5, + 5p + 51 + 52.

— Case ¢, ends with rule (m). Then ¢ must be of the form w and ¢ must
be of the following form:

(D%, > Iy s My H080 w2 0y)eq
(m)

tierly o Uiep My Fietbotiers) ay  [o]ie

where 7 = [oilicr, It = “+ierli, by = +ierbi, and s, = +iers;.
By Lemma we have the following derivations (¢ > I FLsL)
M,)ier, such that I, = +ier L, b, = +ierbl, and s, = +ier8.. By the
i.h. over each ®¢, we have (‘Piv{m\v}DFi‘i‘Fﬁ - (bitbysits1) w{z\v} : 0;)icr.
Therefore, we can construct @;,, as follows:

(B ey & I+ T FOFsE) wfa\ v} : 07)ie
m

+ier (i + p;’) L (+ier(bitby),+ier(sitsi)) w{z\v} : [oi)ier

And we can conclude with Iy + Iy = +ierly +ier I = +ier (I + T,
b 4 by = +icrbi +ier b, = +icr(bi +0), and s + s, = +icrsi +fier s, =
+icr(si +5}).

— Case @, ends with rule (A\p). Then ¢ must be of the form \y.u, I} = 0,
T=a,M=][], [, =0, t{d\v} = \y.(u{z\w}) = Qy.u){z\v}, b = b, =0,

and s; = s, = 0. So we can construct @;(,, as follows:

(%p)

FOO \yaw){z\v}:a

And conclude with I, + 1, =0, b; + b, =0, and s; + s, = 0.
— Case @, ends with rule (@) or (@), the proof is very similar to when
&, ends with rule (@).
2. The proof follows by induction over ¢:
— Case t = y. Then we have to consider two cases:

e Case t = y # x. Then, t{z\v} =y. Let [, = 0, M =[], b, = 0,
and s, = 0. Then, @, is derivable using rule (m). We also take &; =
Pi(np}, S0 that, in particular It = I{p,). Then, we conclude with
Ft{x\v} :Ft+FU :Ft, b:bt+bv :bt, ands:st—i—sv = S¢.

e Case t =y = x. Then, t{z\v} =v. Let I}, =0, by =0, and s; = 0.
Now, we have to consider two cases depending on the last rule used
in dst{:r\v}:

(@)
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* Case Py} ends with rule (ax), then 7 = 0. Let I, = I},
M = [o], b, = b, and s, = s. Then, we can build derivation &,

as follows:
@t{x\v} > Ft{;c\v} F(b’s) V.o

Ft{a:\v} l—(b’s) v [O’]
Let I = 0, by = 0, and s, = 0. Then, &, >z : [o] FOO 2 : ¢
is given by rule (ax). So we can conclude with I,y = I3, =
Ii+ Iy, b=0b,=0b+0b,, and s = 5, = S¢ + Sy.

* Case @y, ends with rule (m), then 7 = [04]ics, for some 1. Let
I = 0, and M = [0;];er. Then, we can build @; as follows:

(ax)
(m)

(m)

(z: (03] FOO 2 0y)ier

z: [o3]ier FOO 2 [03]ser

Then, we can take @, = Py, so that I, = iy, by = b,
and s, = s. And we can conclude Iyp,y = Iy = Iy + I,
b=0b,=0b;+0b,, and s = s, = 8 + Sy.
— Case t = Ay.u. Then t{z\v} = (Ay.u){z\v} = Ay.(u{z\v}) and we have
to consider three cases:
o Case Py(,} ends with rule ()), then it must be of the following form:

Qu{w\v} > Fu{m\v}’ Yy M F(b’S) U{I\U} o7
Lugao} O Ay (u{z\v}) : M = 7'

()

where 7 = M" = 7/, and Iy(»,) = Iua\p}- By the i.h., we have
the following derivations @, > [;y : M';z : M F®wse) 4 2 § and
@, > I, F50) v M, such that Iy = I+ 10, b= by + by, and
§ = 8y + 8,. And we can build @y, ., as follows:
Gu> Ty Mz M EOusu) g 7/
Lyiz: M EFOwse) Ny M = 7/

()

So we can pick @y = @y, .4, and conclude with Iypn,y = ugaey =
I,+1I,,b=>b,+b,, and s = s, + S,.
e Case 45,1 ends with rule ()p), then is must be of the following

form: ()
FO0) Ay (u{z\v}) : a

where 7 = a, I'{py = 0,0 =0, and s = 0. Let I} = 0, M =[],
b, =0, and s; = 0. Then, we can build @; as follows:

(Ap)

FO9 Ay : a

Let I, = (0, b, = 0, and s, = 0. Then &, can be constructed by
using rule (m) with no premises. So we can conclude with T Haw) =
0=I,+T,,andb=0=0b,+b,, and s =0 = s, + 5,.



o Case Py(,,} ends with rule (m). Then t{z\v} and ¢ are values, and
P2y must be of the following form:

(@Z \>F1' F(bi’si) t{CE\’U} : Ui)ie[
+icrl; b (+icrbi,tiers:) t{x\v} . [Ui]iel

(m)

where 7 = [0i)ier, Ii{ap} = +ierlis b= +ierbi, and s = +iersi. By
the i.h. over each @;, we have the following derivations @} > I};x :
M, FOsD) ¢ g and QT Fusu) 4 0 M,, such that I = i+ T,
b; = b, + b, and s; = st + ! for each i € I. So we can build &, as
follows:

(@) > Iy My FOSD ¢ 0y) e

m
tier ;@ Ujeg M, HFierbibierst) ¢ (o]0 .
such that Iy = +ierlf, M = UietM;, by = +ierbl, and
st = +ierst. By Lemma we can take the following derivation
Dy, > +ier p(tierby,tiersy) o+ M. And we can conclude with
Ligawy = +ierli = +ier(IY + 1Y) = +ierl +ier Ty = Iy + T,
b = +ierb; = +ier(by +b,) = +ierby +ier b, = b + by, and
5 = +icrsi = +ticr(s; + 5y) = +icrs; tier 5y = 5t + o
— Case t = up. Then t{z\v} = (u{z\v})(p{z\v}) and we have to consider
three cases:
o Case @y5,1 ends with (@), then it must be of the following form:

éu{z\v} > Fu{z\,u} l—(b,’sl) u{x\v} : M/ =T ¢p{x\v} > Fp{a:\’u} |_(b”,s”) p{x\v} : M/

Tugavwy + Dpgawy FOTVH+ (w{z\v}) (p{z\v}) : 7

where Ft{ﬁ\v} = Fu{w\v} +Fp{a:\v}7 b=1+b+b",and s =s'+5". By
the i.h. over @, (,,}, we have the following derivations @, > I'y;x :
My Flusa) o M' = 7 and @) > T} F®us) y : My, such that
Luipoy = D + Lo =b, +bl, and s = s, + s.. And by the i.h.

v

(@)

over @1, we have the following derivation @, I,;z : My F(bp5p)
p: M and ®2 > I'2 U050 4 0 My, such that Lotaer = Ip + IZ,
b = b, + b2, and s” = s, + s2. By Lemma we can take the
following derivation @, > I’} + I'2 F(u+b350+50) 4 0 My U May, such
that I, = [} + I'2, b, = bl + b2, and s, = s} +52. And we can build
D, as follows:

Dy Ty [og)ier, FOws9) u: M = 7 D,y x: [04]icr Fposp) 1o M/
(Dy+ Tp);w : [oi)ier FOToutbesutsn) yp o 1

such that Iy = Iy + I}, by = 1 4+ b, + by, and s, = s, + 5. S0 we
can pick @; = @y, and conclude with I'ifny = Lufaw) + Lpfaw) =
Dy AT 4T, 412 = (Du+ L)+ (DL +T2) = T4 Ty, b= 14V 40" =
L4by + b, +b, +b2 =1+ (by +bp) + (b + %) = by + by, and
§= 8y +5h+5p+ 52 =(su+5p) + (55 +52) = st + 8.

(@)
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o Case @;(,,) ends with (@,;) and (@y2). These cases are very similar
to the case where @, ends with rule (@).

Lemma 17 (Split Exact Subject Reduction and Expansion).

1. Let &> F5) ¢ - 1 be tight. If t — t', then there exists Gy > FO—15) ¢/ - .
2. Let DT %) ¢/ 7 be tight. If t — t', then there exists &> FO+15) ¢ o 7

Proof.

1. We will actually prove the following stronger version of the statement, which
allows us to reason inductively:
Let @y > ' F®%) ¢ : 7, such that I is tight, and either 7 is tight or —val(t).
If t — t/, then there exists @y > ' HO=15) ¢ . 7,
The proof now follows by induction over —:
— Case t = (Az.u)v — u{z\v} = t.Assume that ®; ends with rule (@p).
Then Az.u must be assigned type @, which is not possible by Lemma [9}
Now, assume that &, ends with rule (@p). Then v must be assigned
typed n, which is not possible by Lemma|[8] Therefore, ¢, must be of the
following form:

D> Dy M EOwse) 0
L, FCwse) ) : M =7 D, > I, Hbvse) 42 M

r,+T, - (14bu+by,sutso) Ao T

(@)

where 7 € tt, I' = I, + I, is tight, b = 1 + by + by, and s = sy + Sy.
By Lemma we know there exists the following derivation @, ..} >
I, + T, Flutbosutsy) yla\v} 1 7. So we can take @y = P, 1,y and
conclude with 6 — 1 = b, + b,,.

— Caset = up — w'p =t/, such that u — v'. Then @; must either end with

(@)a (@pl)v or (©p2):
e Case @; ends with rule (@), then it must be of the following form:

D> L, FOos) y: M =7 @y, ) pi M

Fu + Fp |_(1+bu,+bp73u+5p) up T

(@

where 7 = 7 € tt, [’ = [, + I}, is tight, b = 1+ b, + bp, and
s = 8, + sp. Since u — «/, it is clear that —val(u) holds. More-

over, I, is necessarily tight. Therefore, by the i.h., there exists
&, > T, FOu=1su) o/ - M = 7. Thus, we can build &, as follows:

b, > 1, (bu—1,5u) Wi M= @p 1>Fp }_(bwsp) p: M
Ly + I, FOutbessutsn) ofp . 7

(@)

And we can conclude with b —1 = b, + b,.
e Case @, ends with rule (@y1) or (@), the proof are similar to the
one where @; ends with rule (@).
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— Case t = up — up’ = t/, such that u 4 and p — p’. Then @; must either
end with (@), (@), or (@p2):
e Case @; ends with rule (@), then it must be of the following form:

B> D FOws) e M =1 &, T, Flrs) p: M

[y + I, FOFbutbpsutsy) g 7

(@)

where 7 € tt, I' = I, + I}, is tight, b = 1 + b, + by, and s =
Sy + 8p. Since p — p/, it is clear that —val(p). Moreover, I}, is
necessarily tight. Therefore, by the i.h., we know there exists the
following derivation @, > I}, F(®»=1:52) p’ © M. Thus, we can build
&, as follows:

D> L, FOws) y e M =7 &y T, FO1s0) 2 M
Iy + I Fbatbossutse) '« 7

(@)

And we can conclude with b —1 = b, + b,.
e Case @, ends with rule (@) or (@), the proofs are similar to the
ones where @, ends with rule (@).
2. Just like for Lemma[I7|[T} we will actually prove the following stronger version
of the statement, which allows us to reason inductively:
Let @y > ' %) ¢/ . 7 such that I is tight, and either (7 € tt or —val(t)).
If t — ¢/, then there exists @, > ' Fb+1s) ¢ .
The proof now follows by induction over —:
— Case t = (A\z.uw)v — u{z\v} = t’. Then &y > I ) y{z\v} : 7
and, by Lemma there exist the following derivations @, > I, :
M FCws) - and @1, FOvs0) 40 M, such that 7 € tt, I' = [, + 1,
is tight, b = b, + b,, and s = s, + s,. So we can build @, as follows:

D> Lyya: M EGws)
I, FOwsu) \p oy s M = 7 D> I, Floso) 0 M
L, + I, FOtbutbosutse) (Ap ) -1

And we can conclude with b+ 1 =1+ b, + b,.
— Case t = up — u/p = t/, such that v — u’. Then ®; must either end
with (@), (@p1), or (@p):
e Case @y ends with rule (@), then it must be of the following form:

(@)

Gy > Ly Fowsd) /s M =7 Dy T, Fes) po MY

[y 4 T, FO+butbpsutsy) 4/ - ¢

(@)

where 7 € tt, I’ = I, + I} it tight, b = 1 4+ b, + b,, and s =

Sy + Sp. Since u — o/, it is clear that —wval(u). Moreover, I}, is

tight. Therefore, by the i.h., there exists the following derivation

@, > [, FOutbsu) oo M/ = 7. Thus, we can build @, as follows:
Gy Ly FOALsd 4 M = 17 &, T, Flese) po M/

r, + Fp |_(1+bu,+1+bp,su+sp) up T

(@)
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And we can conclude with b+1 = (14b, +b,) +1=1+b,+1+b,.
o Case ¢y ends with rule (@p;) or (@), the proofs are similar to the
one where @4 ends with rule (@).

— Case t = up — up’ = t/, such that p — p’. Then &, must either ends
with (@), (@), or (@ps):

e Case Py ends with rule (@), then it must be of the following form:

o Dy Flws) y e M =7 @y T, FOmse) pf o M

[, + I, FOHbutbpsutss) g - 1

(@)

where 7 € tt, I' = I, + I}y is tight, b = 1 4+ b, + by, 5t = s +
sp. Since p — p/, it is clear that —wval(p) holds. Moreover, I}, is
tight. Therefore, by the i.h., we have the following derivation &, >
I, Fpt+150) o M’ = 7. Thus, we can build @,/ as follows:

Gy > T EOwsw) e M =7 > T, FO L) oo MY

r, + Fp |_(1+bu,+bp+1,su+sp) up T

(@)

And we can conclude with b+1 = (140b, +b,)+1=1+b,+b, +1.
o Case &y ends with rule (@p;) or (@), the proofs are similar to the
one where @4 ends with rule (@).

Theorem 2 (Quantitative Soundness and Completeness).
If &I %) t 1 s tight, then there exists u € no such that t —° u with |u| = s.
Ift =" w with u € no, then there exists a tight type derivation $y>I FO:1uD ¢ . 7.

Proof.

1. The proof follows by induction over b:

— Case b= 0. Then ¢ € no, by Lemma[l0] And d = [t|, by Lemma [T1] So
we can conclude with v = ¢.

— Case b > 0. Then t ¢ no, by Lemma r Therefore, there exists ¢’ such
that t — t, by Prop. Il ByLemmal|l7l1} there exists &, o1 =15 ¢/ . 7.
By the i.h., there exists u € no, such that #' —~1 u, such that d = |ul.
So we can conclude with ¢t — # —?~1 «, which means that ¢t —® u, as
expected.

2. The proof follows by induction over b:
— Case b = 0. Then t = u, which means that ¢ € no. Therefore, we can
conclude by Lemma
— Case b > 0. Then there exists ¢/, such that ¢t — ¢’ —*~1 u. By the 4.h.,

there exists a tight derivation @, > I" F®=LIuD ¢ 7 ByLemma
there exists a tight derivation @ I' %D ¢ : 7. So, we can conclude.
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A.2 A )X-Calculus with Global State

General Lemmas
Proposition 2. Let (t,s) be a configuration. Then (t,s) is final iff (t,s) /.

Proof. =) Let (¢, s) be final. We consider two cases:
e Case (t, s) is blocked. We reason by induction on blocked configurations.
% Case (t,s) = (get;(Ax.u),s), such that [ & dom(s). Then (t,s) /4 is
straightforward.
x Case (t,s) = (vu, s) and (u, s) is blocked. Then by the 4.h., we have
that (u, s) /. Therefore, (vu,s) 4 holds.
e Case t € no. We reason by induction on no.
x Case t = v € Val. Then (v, s) /4 is straightforward.
* Case t € ne. Then ¢t = vu and we have to consider two different
cases:
- Case v = z and u € no. Then by the i.h., we have (u,s) /.
Therefore, (vu, s) # holds.
- Case v = (Az.p) and u € ne. Then u € no, and by the i.h., we
have that (u, s) /. Therefore (vu, s) 4 holds.

<) Let t /. We reason by induction on ¢:
e Case t =v. Then t € no. Therefore (¢, s) is final.
e Case t = vu. Since (vu, s) #, then (u,s) /4. By the i.h., we have (u, s)
final. Now, we reason by cases:
x Case (u, s) is blocked. Then, (vu, s) is blocked by definition.
* Case u € no. Then we have two cases:

- Case u € ne. Then vu € no. Therefore, (¢, s) is final.

- Case u € Val and v = Az.p. Then ((A\z.p)u,s) — (p{z\u},s),
which yields a contradiction with the hypothesis ¢t = vu /4. Thus,
this case does not apply.

o Caset = get;(Az.u). Since (get,;(Azx.u),s) #, then ! ¢ dom(s). Therefore,
(get;(Az.u), s) is blocked, which implies (¢, s) is final.

o Case t = set;(v,u). Then (set;(v,u),s) = (u,upd,;(v,s)), which yields
to a contraction with the hypothesis ¢t /4. Therefore, this case does not
apply.

Proposition 3. If &> ' F0™d (t5) : k, then (t,s) is unblocked.
Proof. By induction on t:

— Case t € Val or t = set;(v,t). Then the conclusion trivially holds, since
clearly (¢, s) is not a blocked configuration.
— Case t = get,;(Az.t). We have two cases:

e Case | € dom(s). Then (t,s) is clearly unblocked.



31

o Casel ¢ dom(s). Let So = {(!: I'(x))} US. Since ¢t = get;(Az.u), then &
must be of the following form:

oI, \x f (b, du) get,(Az.u) : So >k P> A Fsmsds) g . S

(conf)
(L \z) 4+ A FOutbaltmutmeditds) (got (A\z.t),s) : K

where I' = I, \z, b = b, + bs, m = 1 +my +my, and d = d,, + ds. Thus,
I € dom({(l : I',(z))} W S), and so by Lemma [20| we have | € dom(s),
which gives a contradiction with the hypothesis | ¢ dom(s). Therefore,
this case does not apply,
— Case t = vu. Assume @, > I, Fbvmod) 4 0 M = (S > k) and &, >
I, Flwmusda) 32 S > (M x 8'). Then ¢ must be of the following form:

¢1) qu (@)
I, + I, FOFbotbumotmadotdn) 10 S > B > Abbemad) g: S

(Iy + Iy) + A FOFbotbutbemotmutmadotdutds) (yy,5) 1 g

(conf)

where I' = (I, + Iy) + A, b= 14 by, + by + bs, m = my, + m,, + mg, and
d =d, + dy + ds. Thus, we can build the following derivation for (u, s):
D, > I, FOwmwds) 4 S (M x S') Dy ARCamads) 5.8

f
'+ A F (butbs mut+ms,dutds) (u, s) M xS (con )

By the i.h., we have that (u,s) is unblocked. Therefore, (vu,s) also un-
blocked.

Lemma 18 (Relevance). Let &1 -4 ¢ T (resp. &' O m'd) 5. S),
Then dom(I") C £v(t) (resp. dom(I") C fv(s)).

Proof. The proof following by induction over @ (resp. ). Case & (resp. ¢')
ends with rule (ax), (axp), or (Ap) (resp. rule (emp)), then @ (resp. @') is clearly
relevant. The other cases follow easily from the i.h..

Soundness Lemmas (Auxiliary Lemmas)
Lemma 1.

1. Let & ' HO04) ¢ - § be tight. Then, (1)t € no and (2) d = |t|.
2. Let > AFO00D 5 S be tight. Then d = 0.

Proof.

1. We replace the statement by the following three ones.
(1.1) 6 =8> (nx &), then ¢ € ne.
(1.2) f § =S > (tt x §’), then ¢ € no.
(2) d=t.
We reason by simultaneous induction on tight derivations.
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Case @ ends with (ax). This case does not apply since the resulting type
is not a monadic type.

Case @ ends with (\). This case does not apply since the resulting type
is not a monadic type.

Case @ ends with (@). Then the first counter in the conclusion of the
derivation is necessarily greater than 0 and thus this case does not apply.
Case @ ends with (m). This case does not apply since the resulting type
is not a monadic type.

Case @ ends with (1). Then @ cannot be tight.

Case @ ends with (get). Then the second counter in the conclusion of
the derivation is necessarily greater than 0 and thus this case does not
apply.

Case @ ends with (set). Then the second counter in the conclusion of
the derivation is necessarily greater than 0 and thus this case does not
apply.

Case @ ends with (axp), so that t = « and s = 0. The condition of
case (1.1) is not possible by construction. In case (1.2) we can conclude
x € Val C no. The statement (2) d = 0 = || is straightforward.

Case @ ends with ()\p) so that ¢ = Az.u and d = 0. The condition of
case (1.1) is not possible by construction. In case (1.2) we can conclude
Az.u € Val C no. The statement (2) d = 0 = |Az.u| is straightforward.
Case @ ends with (@p1), so that t = zu and d = 14 d'. If the condition of
case (1.1) holds for ¢, that means that the condition of case (1.2) holds
for w. By the 4.h. (1.2) u € no so that zu € ne. The condition of case
(1.2) holds for ¢ only for tt = n, and then xu € ne holds by case (1.1),
which implies zu € no by definition. To show statement (2), we apply
the i.h. (2) to u and obtain d’' = |u|, then d =1+ d' =1+ |[u] = |¢|.
Case @ ends with (@p,), so that ¢t = (Az.p)u and d = 1 + d’. If the
condition of case (1.1) holds for ¢, that means that the condition of case
(1.1) holds for u. By the i.h. (1.1) u € ne so that ¢t € ne. The condition of
case (1.2) holds for ¢ only for tt = n, and then ¢ € ne holds by case (1.1),
which implies ¢ € no by definition. To show statement (3), we apply the
i.h. (3) to u and obtain d’' = |u|, then d =1+ d' =1+ |u| = |¢|.

2. By induction over @:

Case @ ends with (emp). Then it must be of the following form:

— (em
onn g P

where d = 0. So we can conclude.
Case @ ends with (upd). Then it must be of the following form:

O, I, FO0d) e M Dy A, 00 g0 S,
I, + 4, H(0:0.dvtda) ypd, (v, q) : {1 : M} S,
where d = d,, + dy. Then @, must be of the form:

(upd)

(I HOO0D) 4 o))

(m)

i 1 (0,0,+ierdl) 4 .
+ier E FOOTierd) v o] ie s



33

where I, = +ier Iy, dy = +ierdi, and M = [0;]ies. Given that {I :
M} S, is tight, then tight(M), and so o; is tight, for each i € I.
Then by point (1) of Lemma [l |v| = d for each i € I. But since
v € Val then its size is 0, which means d! = 0 for each i € I, therefore
d, = —l—ieldf) = 0. Furthermore, d;, = 0, by the i.h. Therefore we can
conclude d = d,, + d, = tierd, +0=0+0=0.

Lemma 19. Let & I FO0D . § be tight. If t € no, then § =S — tt x &’
and S =8'.

Proof. By induction on t € no. We consider two cases:

— Case t € Val. Then such a typing derivation can only end with rule (ax,) or
(Ap), in which cases the statement is obvious.

— Case t = vu € ne. Since the first counter of the derivation is 0, ¢ can only
end with a persistent rule (@) or (@p). In both cases, we can conclude by
applying the i.h. to u € no or u € ne and their type derivations, which gives
S§=8".

Lemma 2. Let & ' ™4 t . § be tight. Then, b=m =0 iff t € no.
Proof.

=) By point (1) of Item [1}
<) By induction on ¢:
e (Case t € Val. There are six cases to consider for @:

x @ ends with (ax). This case does not apply since the resulting type
is not a monadic type.

* @ ends with (A). This case does not apply since the resulting type is
not a monadic type.

* @ ends with (m). This case does not apply since the resulting type is
not a monadic type.

* @ ends with (1). This case does not apply, since 6 =S > (M x §'),
but M ¢ tt.

* @ ends with (axp). Then > : [a] FO%0) 2. S>> (@ x S), with S
tight, and the conclusion holds trivially.

* @ ends with (\p). Then &> 00 Azt : S > (a x ), with S tight,
and the conclusion holds trivially.

e Case t = zu. Then u € no, by definition and there are two cases to
consider for @:

% If & ends with (@). Then @, > I, Flwmuds) 4 : § > (M x &),
Dopx: M= (S>> k) Flomeds) 0 M = (S’ > k), such that
I'=(z:[M= (8> k)])+ I, is tight. Absurd, since M = (§' >
) is not tight, therefore this case does not apply.

* If @ ends with (€p1). Then @, > I, FCwmud) 0 § > (tt x S), such
that I' = (x : [v]) + I, is tight, b = b,, m =m,, d=d, +1, and S is
tight. By the 4.h. on u, we have b, = m, = 0, therefore b = m = 0.
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e Case t = (Az.p)u. Then u € ne, by definition and there are two cases to
consider for @:

% If @ ends with (@). Then @, > I, Flwmudu) 4 0 S > (M x S,
Drwp > Drgp FOP0d) App 0 M = (S’ > k), such that ' =
Fu+[')\m.p is tight, b = 1+ b, + by, m = my + my, d = d; + d,,.
Since I, is tight and u € ne, by Lemma[3] M € tt, which is absurd.
Therefore, this case does not apply.

* If @ ends with (@y). Then @, > I, Fwmudu) 41 S>> (n x S), such
that I' = I, is tight, b = b,, m = my, d = d,, + 1 and Sy is tight.
By the i.h. on u, we have b, = m, = 0. Therefore b = m = 0.

Lemma 20. Let &> AF®™D 5. S, Ifl € dom(S), then | € dom(s).

Proof. We proceed by proving the following stronger version of the statement:
Let &, A, FOmads) 50 S If | € dom(Sy), then s = upd, (v, q), for some
value v and store q.
The proof follows by induction on @g:

— Case @, ends with (emp). Then the conclusion is vacuously true.
— Case @, ends with (upd). Then @, is of the following form:

&, T, - (bo,my,dy) v:M @q > Aq | (bg,mq,dq) q: Sq

- — (upd)
Iy + Ag FOoFbamotmadotve) ypd, (v, q) : {I' : M}; S,

where Ay = I, + Ay, s = upd;, (v,q), Ss = {I! : M};S,, bs = b, + by,
mg = M, + My, and ds = d, + dg;. Now we consider two cases:

e Case [ =1'. Then we are done.

e Case | # I'. Since we are assuming that [ € dom(S;), then it must be
case that | € dom(S,). But, then by the i.h., we have ¢ = upd,(w,q’),
for some value w and store ¢’. Therefore, s = upd, (v,upd,(w,q’)) =
upd, (w, upd; (v,q")).

The correctness of the original statement now follows easily from the fact that,
clearly, if s = upd,;(v, ¢), then [ € dom(s), by Definition

Lemma 21 (Split Lemma).

1. (Values) Let &, I FOmd) o M, such that M = U;erM,;. Then, there
exist (@% > I p(bisminds) o, Mi)iej, such that I' = +;c1l;, b = +;e1b;,
m = +ierm;, and d = +;crd;.

2. (States) Let &, I F™d s . S such that | € dom(S). Then, s =
upd, (v, q), B> 1, (o mosdo) 4y S(1) and D1, F(bamada) ¢ S such that
=L+, S={(l:581))}8", b=>b,+by, m =m,+mgy, andd = d,+d,.

Proof. The proof for values is very similar to the corresponding proof for Ag,
so we are only going to show the split lemma for states. The proof follows by
induction on the structure of s:

— Case s = €. Then the statement is vacuously true.
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— Case s = upd, (w, ¢’). Then &, is of the form:

By > Dy FOwmwsdn) gy s M Gy > Ty b marder) ¢ S,

b b d d (upd)
Ly+ Ty - (bw +bgr s map +mg s duy+d ) updl,(w,q’) . {(l/ . M)};Sq/

where ' =T, + Iy, S ={{": M)}; Sy, b = by + by, m = my, + my, and
d =d, + dy . We consider two cases:

e Case I’ = 1. Then we simply take v = w and ¢ = ¢ and we are done.

e Case I’ # [. Since | € dom({(l' : M)};Sy) and I! # [, then | €
dom(S,/). By applying the i.h. to ¢/, we have that ¢’ = upd,(w’,q"”),
By > Dy Flwmurdu) '+ Sy (1) and Ggn > Ty b mardan) gl 2 S,
such that Iy = Ly + I'yr, Sy = {(1 2 Sg(1)}; Sy, by = by + by,
My = My + Mg, and dg = dyy +dgr. But s = upd; (w,upd;(v’, ¢")) =
upd, (w’, upd;, (w, ¢")), so we can take v = w’, ¢ = upd; (w, ¢"), and con-
sider @, to be the following derivation:

ij > Fu} F(bw,mw,dw) w: M @q” > Fq” F(bq//,mq//,dq//) q// . Sq”

b b d d (upd)
Ly Ly bty dutdy) upay, (w0, ") < {(1': M)}; Sy

where Iy = I, + I'yr and Sq = {(I' : M)}; Sgv. We can then conclude
with the following observations:

* E;+Fq: w’ +Eu+[‘q” :E1;+Fq’ :F,

% Since S = {(I' : M)}; Sy and I’ # [, then S(I) = Sy (1) and

S={(": M)} Sy ={(": M)} {(1: Sy (1))}; Sy
={{: Sy ()} Sy
={(:8)} S,

* by +bg = by +by+bgr = by +by = b, My +Myg = My +Myy +Mgr =
My + My = b and d, + dq =dy +dy + dq// =dy + dq/ =d.

Lemma 22. Let T 04 ¢ S>> (1 x S'). Ift € Val, then T # n.

Proof. By case analysis on the form of ¢ € Val:

— Case t = x. Then we have to consider three cases according to the last rule
used in &:
e Case @ ends with rule (ax), then ¢ can only be assigned o. Therefore,
this case does not apply.
e Case @ ends with rule (m), then 7 = M #n.
o Case @ ends with rule (axp), then 7 =0 # n.
— Case t = Az.t. Then we have to consider three cases according to the last
rule used in ¢:
e Case @ ends with rule (\), then ¢ can only be assigned o. Therefore, this
case does not apply.
e Case ¢ ends with rule (m), then 7 = M # n.
e Case ¢ ends with rule (A\p), then 7 = a # n.
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Lemma 23. Let & ' ™D t 2 S>> (7 x 8, such that T is tight. If 7 € 3,
then —abs(t).

Proof. By induction over @:

— Case @ ends with rule (ax), (@), (get), (set), (axp) (@p1), or (@p2), then
—abs(t) holds by definition.

— Case @ ends with rule (\), (m), or (X\p), then 7 € @ does not hold. Therefore,
these cases do not apply.

Completeness (Auxiliary Lemmas)

Lemma 24 (Merge for Values). Let (&) > I; H®omidi) 4 2 M;)scr. Then,
there exists @, > I’ FO™D o o M, such that I' = 441, M = +ic1 M,
b=+icrbi, m = +icrmi, and d = +icy.

We omit this proof given its similarity with the proof for system O.

Lemma 3 (Tight Spreading). Let T oD .S > (1 xS'), such that
I is tight. If t € ne, then T € tt.

Proof. We want to show that, if ¢ € ne, then 7 € tt, for some &’. We proceed
by induction on the predicate ¢t € ne:

— Case t = zu, such that v € no. Then we have to consider the following two
cases depending on the last rule in @:
e Case @ ends with rule (@), then it must be of the following form:

(ax)

z: M= (8> k)| FOOD) 2 M= (8> k) Dy > Iy FOwmwd) 40 8§ (M x S')

(z: M= (8> r)))+ I FOTwmeds) g4 S>> 4

where I' = (z : [M = (8’ > k)]) + I}, is tight, b = 1 + b,,, m = m,,, and
d=dy,. But M = (8’ > k) € tt, therefore I" is not tight and we have
a contraction. Thus, this case does not apply.

o Case ¢ ends with rule (@), then 7 = n € tt, so we can conclude
immediately.

— Case t = (Az.p)u, such that u € ne. Then we have to consider the following
two cases depending on the last rule in &:
e Case ¢ ends with rule (@), then it must be of the following form:

I, FOemeds) \pp: M = (S>> k) @0 T, FOwmuds) 40 S>> (M x S)

I,+ 1, - (14bp b mp s, dp +du ) Az.p)u:8 >k

where I' = I', 4+ I, is tight, b = 1 4+ b, + by, m = my, + my, and d =
dp+d,,. By the i.h. on u, we have that M € tt, which is a contradiction.
Therefore, this case does not apply.

e Case ¢ ends with rule (@y). Then 7 = n € tt, so we can conclude
immediately.

(@)

(@)
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Lemma 4 (Typability of States and Normal Forms).

1. Let s be a state. Then, there exists & > 099 s : S tight.
2. Let t € no. Then for any tight S there exists > T FO™d ¢ S>> (tt x S)
tight s.t. d = |t].

Proof.

1. By induction on s:

— Case s = €. Then we can build @, as follows:
— (ax
w00 g &

And we can conclude with S = ) tight.
— Case s = upd,(v, ¢). By the @.h., there exists $,> A, F©.0.0) ¢ S, tight.
Therefore, we can build @, as follows:

——— (m)
H(0:0.0) 4 . ] P> 000 ¢ S,

H000) upd, (v,q) : {(L: [])}: 8,

And we can conclude with & = {(1: [])}; S, tight.
2. By simultaneous induction on the following claims:
(a) If t € ne, then @' ™D ¢ S — n x S tight, such that d = [t|, for
any tight S.
(b) If t € no, then & ' ™4 ¢ . S — £t x S tight, such that d = |¢|, for
any tight S.
(a) By induction on ¢ € ne:
— Case t = zu, such that u € no. By the i.h. (Lemma 7 we have
D, > [, FOwmuwda) 4 0 S>> (tt x S) tight, such that d, = |ul, for
any tight S. Therefore, we can build @ is as follows:

(upd)

L, FCwmuda) 40 S (1t x S)
(z: [v]) 4 Dy FOwmel¥de) gy § > (n x S)

(@pl)

And we can conclude with I' = (x : [v]) + [, tight, b = by, m = my,,
andd=1+d, =1+ |u| =1+ |z|+ |u| = |zu].

— Case t = (Az.p)u, such that u € ne. By the i.h. (Lemma [42a]), we
have @, & I" Fbuemusdu) 4 0 S > (n x S) tight, such that d,, = |ul, for
any tight S. Therefore, we can build @ is as follows:

gpu [>l" |_(b1umu»du) u S > (n X S)

b 1+d (@p2)
Fu F( w Moy, 1+dy) (/\xp)u S>> (n X 8)

And we can conclude with b = b,, m = m,, and d = 1 +d, =
1+ Ju| =14 |Az.p| + Ju| =1+ |(Az.p)ul.
(b) By induction on t € no:
— Case t € Val:
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e Assume ¢t = z. Then we can build &; as follows:

(axp)

z:[@ FO00 2 S>> (@x S)
for any S tight. And we can conclude with I" = (z : [f]) tight,
andb=m=s=0=|z|
e Assume t = Az.u. Then we can build @; as follows:

(Ap)

FO00) Apu: S>> (ax S)
for any S tight. And we can conclude with I" = () tight, b = m =

s=0=|Az.ul.
— Case t € Val. Then t € ne, and this case is subsumed by the previous
cases.

Soundness and Completeness (Main Lemmas)
Lemma 5 (Substitution and Anti-Substitution).

1. (Substitution) If ;> I;z : M Fbemed) 2§ and &, T, Hbvmeds) 4
M, then @yppy > Iy + Iy F(betbomatme,ditdo) $La\ ) 2 6,

2. (Anti-Substitution) If &,y Iiaey FO™D t{a\v} 1 8, then &yp Iy
M bCemedd) 2§ and @, > I, =Comedo) 0 M, such that Typey = i+ 1y,
b=0bi+b,, m=my +my, and d = d; + d,.

Proof.

1. We are going to generalize the original statement by replacing § with 7.

The proof now follows by induction over the structure of &;:
— Case &, ends with rule (ax). Then ¢ must be a variable and we must
consider two cases:
e Assume t =y =xz. Then I =0, T = M, t{z\v} = v, by = my =
d¢ = 0. So we can take @,y = P, and conclude with I + I, = I,
bt + bv = bva My + My = My, and dt + dv = dv-
e Assume t = y # x. Then M =[], I, = 0, t{z\v} = ¢, b, = 0,
m, = 0, and d, = 0. So we can take @, ,1 = P; and conclude with
Ft—f—F,U :Ft, bt+bv :bt, My + My, = My, and dt+du :dt.
— Case @; ends with (A). Then ¢ must be of the form Ay.u and @; must be
of the following form (by a-conversion):

> Tyx: MEComed) 40 S i
(I'\y);z: M F(oemede) Ny gy I'(y) = (S > k)

where Iy = (I"\y), and T = I'(y) = (S > k). By the i.h., we have the
following derivation @,y o1+, FOFbemetmeditds) 4 fa\p} 0 S>> k.
Therefore, we can build @, as follows:

()

By} b I+ Ty FCetbomitmoditds) Lo\ g} S>> &
(I 4 I,) \y Fletbometmoditd) \gy L3\ 0} : D(y) = (S > k)
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And we conclude with (I" + I,) \y = (I' \y) + [, = I + [, by a-
conversion.

Case @, ends with (@). Then ¢ must be of the form wu and &; must be
of following form:

D> Ty e My FOwmwde) 4o M= (8> k) Dy Ay s Mo FOwmwds) 40 8§ (M x S)
I+ Az s My U My FAFbwtbumutmudutde) 3, 2 § > g

such that I =I'+ A M =M UMy, T =8>k, by =1+ by, + by,
Me = My + My, and d; = dy, + dy. By Lemma we know there exist
the following derivations (®% o I7 timidi) 4 o M) ;e (1 03, such that
I, =T!+T2 b, = by + by, my = mq + mg, and d, = dy + d. By the
i.h., we know there exist @, [,y 1+ I} FEwtbrmutmidutd) g fa\y}
M = (8" > k) and Py ppp) > A + I2 Flutbemutmeditda) o[\ 4}
S>> (M’ x8’). We can build @, as follows:

(@)

Puiaey  Pufav}

(F + A) + ([’1} + ['3) b (14bw+by+b1+b2,mw+mu+mi+ma,de+du+di+dz) (wu){x\v} S>>k

¢

And we can conclude with I+, = (I'+A)+ (L2 +12), by+b, = 1+by+
by+b1+ba, mi+m, = my+mqy+mi+ms, and di+d, = dy+dy+di+ds.
Case @, ends with (m). Then ¢ must be of the form w and @; must be
of the following form:

(1, > Ty My FComadi) g2 0) 0

+ierly @ UielMi F(tierbi,tiermi,tierds) o [O'i}iel

(m)

such that I} = +icrli, T = [O'i}iej, by = +,ie_Ibi’ my = “+iermi, and
dy = +icrd;. By Lemma (@ > I FOwmudu) 42 M;)eq, such that
Fv = +1‘61E§, b’L) = +iejb:’), My = +i61mi, and dv = +i€]d:’). By the Zh

over each @' we have ((piv{z\v} >+ I - (bi+b},mi+ml di+dy) w{z\v} :
0i)ic1- Therefore, we can build @, as follows:

(%{m\v} > I+ 17 (it} mi+ml di+d) w{z\v} : 02)icr .
m

+i€l([’5 +F5)) F(vﬂel(bi+bf,),+i51(m¢+mi),+i51(di+df,)) w{z\v} : [rilics

And we can conclude with Iy + Iy = +ierly +ier I = +ier (I + T,
b + by = Ficrbi +icr by, = +ier(bi + by,), me +my = Ficrmi +ier m;, =
+ier(mi +my,), and di + dy = +ierdi +ier dy, = +ier(di + dy).

Case @; ends with (1). Then ¢ is a variable and @; must be of the following
form:

D> Iy s M ECemede) gy o A/
Dz M EComed) 0 S (M x S)

where 7 = & > (M’ x S). By the i.h.,, we have @y rp,y > I' +
I, = betbometmo.ditdo) o f4\} o M. Therefore, we can build @, as
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follows:
qsw{fc\v} > I+ Fv '—(bt+bv7mt+m'u,dt+dv) ﬂ){(E\'U} . M/
I+ I, pOutbomitmy, detdy) w{z\v}: 8> (M’ xS8)

And we can conclude.
Case @, ends with (get). Then ¢ must be of the form get;(Ay.u) and &,
must be of the following form:
Gy > Dy s M Ebwmuda) 4 - S s g
(L \y); 2 M EFOwltmuds) got, (Ayau) : {(1: Tu(y)}US > &

get)

where T = {(I: Iu(w)}US > K, It = Iy \y, be = by, me = 1+ my,
and dy = d,,. By the i.h., we have @, () > T, + I, FGutbomutme.dutdy)
u{z\v} : § — K. Therefore, we can build @) as follows:

q’;u{w\v} >I, + I, F (butby,mu+my,dy+dy) u{x\v} ‘S>> K

et)
(L + Ty) \y FOetbe bt dutd) get, (\yu){z\v}: {(L: Tu(y)} U S > s

And we can conclude with (I, + I,)) \y = (I’ \y) + I, = I + I, by a-
conversion, by +b, = b,+b,, mi+m, = 1+m,+m,, and d;+d, = d,,+d,,.
Case @, ends with (set). Then ¢ must be of the form set;(w,u) and &,
must be of the following form:

Doy > Dy s My FOwmwde) gy o M Dy > Ty s Mo FOwmada) o L1 M ES >k
Ly + Ty s My U Mg EGwtbu 1 ma+ma,du +du) set)(w,u) : S>>k

(set)

where T =8>k, [y =1y + 1,0 =8> kK, by = by + by, mt1:111+
Moy + My, and dy = d, +d,,. By Lemma we have @})val p(bysm,dy,)
v : My and @2 2 FELmLA) 4 o My, such that I3, = ' + I'2,
b, = bl + b2, m, = ml +m?2, and d, = d! + d?. By the i.h., we have
qs’w{a:\’u} > Fw -+ F’Ul }—(bq;;+b11;vm7u+m11ﬂd1u+d11;) w{x\’l}} : M/ and @u{m\v} >
L, 4 12 plutbimutmidutd)) 00\ p} : {(I : M)};S > k. Assume
Doy > Lo+ Iy bty mutmy dutdy) 4y La\p} : M and Doy > Lu +
2 plutbimatmidutd)) 0o\ v} {(1 : M)} 8 > k. We can build
Dy (a0 as follows:

Puiavy  Pufavw)

(Cw + Ty) + ([‘vl + [‘3) - (buw+bu+by 403 14+mu +ma+my +m? dy+dy+d,+d3) (wu){z\v}: 8> r

(set)

And we can conclude with Iy + 1, = (L + )+ (DL +172), by +by = by +
by +bL+b2, my+my, = L+my+my+ml+m?, di+d, = dy+d,+dL+d2.
Case @, ends with (ax,). Then t must be a variable and we must consider
two cases:
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e Assumet =y =x. Then I; =0, T =S = (@3> S), t{z\v} = v,
b: = my = dy = 0. Moreover, M = [@]. We have to consider two
cases:

+ Case v = 2. Then ®,>z : [] H®%9 2 : [@]. So we can take @y}
as the following derivation:

(axp)

z:[@FOY 2: S>> @xS)

and conclude with It + I, = I, = (2 : [@]), b + b, = b, = 0,
my +my, = m, =0, and d; + d, = d,.
x Case v = Az.p. This case does not apply, by Lemma
e Assume ¢t = y # x. Then M =[], [, = 0, t{z\v} = ¢, b, = 0,
my = 0, and d, = 0. So we can take ®;(,\,) = P; and conclude with
Ft+FU :Fta bt+bv :bta Mg + My = My, and dt+dv :dt-
— Case @, ends with (X\). Then ¢ is of the form A\y.u, It =0, T =S8 >

(ax8), M =[], Iy =0, t{z\v} = Ay.(u{z\v}) = (Ayw){z\v},
by = b, =0, my =m, =0, and d; = d, = 0. So we can build @} as
follows: )

P

FO0.0 (\yu){z\v}: S>> (axS) (
And conclude with I, + Iy = 0, by = b, = 0, my = m, = 0, and
dy =d, =0.
— Case @, ends with (@p1). Then ¢ is of the form yu and we have to consider
two cases:
e Case y = x. Then &; must be of the following form:

I, Flumeda) 0 8> (2t x S)

(z: [v] U Ty (x)); (D \z) Flwmultdn) 240 S>> (n x S) (©1)

such that Iy = (I, \z), b = b,, m = m,, and d = 1+d,. Then M =
[v]uIy (x) and, by Lemma we have @111 F(bumydy) oy [v] and
@2 2 FO0medy) o ;[ (z), such that Ty = I + I'2, b, = bl + b2,
my, = ml +m?2, and d, = d} + d?. By the i.h., we know there exists
By (o) & (D \&) + T2 FOutbmutmidutdd) g f2:\p} : § > (1t x S).
Now, we need to consider two cases:

x Casev = z. Then ®lpz : [v] 00 2 [v] and $2pz : I () HO0)

z : I, (x). Therefore, we can build @1} = Py} as follows:

Doy > (D &) + Dy () FOuHbimatmidatd) 4 {p\v} : S > (£t x S)
(z: [v]) 4+ (T \@ + (2 : Ty(x))) FOutbomutmiltdutdd) (4 {z\p}) : S > (n x S)

where (z : [v])+ (I \z+ (2 : Tu(x))) = (Tu\x)+(z : VUL, (2)) =
Ly+Ty, by +b2 = b+bL+b2 = b+b,, my+m2 =m+ml+m? =
m+my, and d, +d?> =d+dl + d*> = d + d,.

x Case v = A\z.p. This case does not apply, since it is not possible
to assign v to Az.p, by Lemma [23]

(@pi)
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e Case y # x. Then, the proof is very similar to when @; ends with
rule (@).
— Case &, ends with (@), the proof is very similar to when &, ends with
rule (@p1).
2. We are going to generalize the original statement by replacing § with 7.

The proof follows by induction over t:
— Case t = y. Then we have to consider two cases:
o Let t =y # x. Then t{z\v} =y. Let I}, = 0, M =[], b, = m, =
d, = 0. Then, @, is derivable using rule (m) with no premise. We
also take @, = @y, so that, in particular It = Ijy). Then,
we can conclude with Iypy = Iy + Iy = Iy, b = by + by, = by,
m=m; +m, =my, and d = d; + d, = d;.
e Let t =y =x. Then t{z\v} =v. Let I, = 0, and b = m; = s, = 0.
Now we will consider two cases depending on the form of v:
* Case v = z. Then t{2x\v} = z and we can proceed by case analysis
of the last rule in @;(,,y. In all of them, we can build &; from
Di(x0}> by simply replacing x with z, and &, as follows:

(ax)
(m)

z: [o] FO00) 2. o

z: [o] F©00) 2 : [o]

And we can conclude since all the counters are zero.

x Case v = Az.p. Then t{xz\v} = Az.p and we can proceed by case
analysis of the last rule in @y, ,}. In all of them, we can always
build @, using either (ax) (case (@)), (axp) (case (Ap)), (ax) plus
(m) (case (m)), or (ax) plus (m) plus (1) (case (1)). D, is either
Dy} (case (m)), or it can be built from @,y plus rule (m) (all
other cases).

— Case t = Ay.u. Then t{z\v} = (\y.u){z\v} = Ay.(u{z\v}) and we must
consider three cases:
o Case @y, ends with rule (\), then it must be of the following form:

glv)u{af\v} > Fu{x\v}??/ : M omed) u{x\v} S>>k
Loy FOmd) Ay (u{z\v}) : M = (S > k)

where T = M’ = (8§ > &) and I'ypp} = Lufap}- By the i.h., we have
D> Dy Mz s MECwmuds) 40 S 5 and @, > T, v medv)
v : M, such that I'yppnny = Ly + Iy, b= by + by, m = my, +m,, and
d=d, +d,. So we can build )y, as follows:

D> Dy Mz MEGemuds) 42 S g
Ly s M EGwmeds) gy o M = (S>> k)

And we can pick @; = @y, 4, and conclude with Iin,y = Iyfae) =
r,+1r,,b=>b,+b,, m=my+m,, andd=d, +d,.
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o Case ®ypy,) ends with rule ()\;). Then it must be of the following
form:
(Ap)

FO0.0 Ay (u{x\y}) : S > (a x S)
where I'jpy =0, T =8> (ax8),andb=m =d = 0. Let I, = ),
M =], and by = m; = d; = 0. Then, we can construct @; as follows:

(Ap)

FO0.0) Ay : S>> (ax S)

Let I, = 0, and b, = m, = d, = 0. Then @, can be constructed by
using rule (m) with no premises. So we can conclude with Iy} =
0=I+T,,andb=0=0b,+b,, m=0=my +my,and d =0 =
di + dy.

o Case @51 ends with rule (m). Then t{z\v} is a value, and @z}
must be of the following form:

(> Ty FOomids) t{a\ v} 2 0y)ier

+ier F(+ierbi,+iermi,+ierds) t{x\v} . [o'i}ieI

(m)

where T = [o4)ier, Tiipoy = Ficrli, b = Hicrbi, m = +iermi,
and d = +¢rd;. By the i.h. over each @;, we have the following
derivations @i > I} x : M, FOombd) ¢ gy and & > T F0wmd)
v : M, such that I; = I} + T% b= b + b, m = m! +m?, and
d=d: +d:, for each i € I. So we can construct @, as follows:

(PivTfx: M; FOLmbdr) ¢ 0i)iel
(m)

_i_iell"f:i;x . uieIMi b (Fierby,+icrmy,+icrdy) t: [Ui]iel

such that I} = +ier I}, M = Ujer My, by = +icrbl, my = +iermi,
and d; = +4¢ Idi. By Lemma we can take the following derivation
Dy > +icr L p(Fierby,tiermy tierd,) 4« M. And we can conclude
with Loy = +ierls = +ier (I + 13) = +ier [} +ier Iy = I + 1,
b= +icrbi = +icr(bj+b,) = +icrbi+ierb, = bi+by,, m = +icym; =
+ier(mi +mi) = +iermi +ier ml, = my + my, and d = +e7d; =
tier(di +d) = +ierd; +icr di = dy + dy.
— Let t = wu. Then t{x\v} = (wu){z\v} = (w{z\v})(u{z\v}), and we
have to consider three cases:
o Case ) ends with (@). Assume Dy, () > Lpfarn) (o sm’".d") w{z\
v M = (8" > k) and Pyiae) > Lugae p(o"m".d") u{z\v}: 8>
(M x 8"). D41} must be of the following form:

Pufawy  Pufav)
Lotavy + Dugapy FOHH0m 40 (wla\oh) (u{z\v}) : S > 5

(@)

where T =8 > &, Ft{z\v} = Fw{m\v} + Fu{z\v}, b=1+b+b", m=
m'+m”, and d = d'+d". By the i.h. over ®,, 1}, we have @,y 2
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My Flumuwdu) gy M/ = (8> k) and B > TL FEumudy) 42 My,
such that Doy = L + Iy, b = by + b, m = my + my, and
d'" = dy + d}. And by the i.h. over @, pp,}, We have &, > Iy :
My FOwmad) 40 8 > (M x §') and @2 b T2 FOmD) 4 0 My,
such that I'yqpp = Iy + 120" =b, +b2, m" =m,+m?2, and d"’ =
dy+d2. By Lemma we can take @i 1!+ 12 by H05.mydmi.dytdy)
v: My UMs, such that I, = I} + T2, b, = b}, + b2, m, = mp, +m?2,
and d, = d! + d?. And we can build @,,, as follows:

b, D,
(D +Ty); e My UM, F (b +busmutma,dwtda) 10,0 § >

(@)

such that Iy = Iy + 1y, by = 1+by+by, my = by +by, and dy = d, +
dy. So we can pick @y = @y, and conclude with Iy = Lypfae) +
b=1+b+b" = 14by+bL+b,+b2 = (1+byy+by )+ (bL+b2) = by+b,,
m=m'+m" =my +ml+m, +m? = (my,+my)+ (m5 +m?) =
mi+my, and d = d' +d" = dy+d+dy,+d? = (dy+dy) +(dL+d?) =
di + dy.

o Case $yy,) ends with (@py) or (@p2). These cases are very similar to
the case where @1, ends with (@).

— Let t = get;(Ay.u). Then t{z\v} = get;(Ay.u{z\v}) and P.(,,} must

be of the following form:

Dy} O Lufae); v M’ FOmD) yfx\v} : 8 > K
Tt PO et Oada\o}) : {(0: M)} US> &

(get)

where Iyrp01 = Dugap) and m = 14+m/. By the i.h., we have @, > I'y;y
Mz o M ECwmeds) 40 § s i oand @, > I, Fbemed) 40 M such
that I'yipey = Lu+ Ly b= by + by, m" = my +m,, and d = d,, +d,. So
we can build @ger (ry.u) as follows:

D> Dyyy: Mz s MECemuda) 40 S g
Ly M EOwItmeds) get (Ay.u) : {(1: M)}US >k

get)

And we can pick @ = Py (ry.u), and conclude with Iira,y = Lyfaw) =
Ly+ Ty, b=0by,+b,,m=14+m'=14my, +m, =(14+my)+m,, and
d=d, +d,.

Let t = set;(w,u). Then t{z\v} = (set;(w,u)){z\v} = set;(w{x\
v, u{\v}). Assume @10} > L0} (¥ m’,d") w{r\v} : M and @, () >
Lugao} RO d") e\ o} s {12 M)V S > k. D120} must be of the
following form:

Puiawy  Pefavwy

Lyiooy + Dufow) (' 1 4m m ' +d”) seti(w{z\v}, u{z\v}) : S >k

(set)
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where Ft{z\v} = Fw{m\v} + Fu{w\v}, b=b+b,m=1+m+m", and
d = d'+d". By the i.h. over @}, we have @,,> 15 2+ My (b1, du)
w: M and &} > I} by mysdy) g My, such that Iyrpy = Lw + rk
V' = by + b, m" = my, +ml, and d' = d, + d.. And by the i.h. over
Dy}, We have &, > Iysz @ Mo FCumauda) o 2 {(1 2 M)}S > k
and @2 b 2 F02m3dl) 4 © My, such that Fyppy = Ly + T2, 0" =
by + b2, m” = m, +m?2, and d’ = d, + d2. By Lemma [24] we can take
B> DL+ T2 Cutbimytmidy+dl) oo Ay LMy, such that I, = I+ 172,
» = bl+b2, m, = ml+m?2, and d, = d.+d?. And we can build Doty (w,u)
as follows:

Dy > Dy 2 My Flwmwsde) o M Dy Ty s My FCwmuda) 4 L(1: M)ES > K
(D + Iy); 2 - My U My FOwtbultmetmudutdu) get) (w,u) : S > K

(set)

such that Iy = Iy, +1, by = by+by, my = 14+my,+my, and dy = dyy+dy,.-
So we can pick @y = Iset,(w,u), and conclude with I,y = Iygaey +
b="b+b" = (by +by) + (bu +7) = (bw + bu) + (by + b3) = by + by,
m=1+m'+m" =1+ (my +mb) + (my, +m?2) = (1 4+ my +my) +
(ml+m2) = my +my, and d = d' +d" = (dy +d}) + (dy +d?) =
(dw +dy) + (dy + d3) = dy + do.

Lemma 6 (Split Exact Subject Reduction and Expansion).

1. (Subject Reduction) Let (t,5) = (u,q). If > T FO™D (t.s) : £ is
tight, then &' > I +0"m"d) (u,q) : k, where r = 8 implies b’ = b — 1 and
m’ =m, while r € {g,s} implies ¥’ =b and m' =m — 1.

2. (Subject Expansion) Let (t,s) = (u,q). If &' > T FOmd) (4 q) : &
is tight, then ® > I =™ (t 5) .k, where r = B implies V' = b— 1 and
m’ =m, while r € {g,s} implies ¥’ =b and m' =m — 1.

Proof.

1. We show a stronger statement of the form:
Let (t,8) = (u,q). If &> I FE™D (¢ 5) .k, T is tight, and (k is tight or
—val(t)), then &' > I (¥ m’.d) (u,q) : Kk, where r = 8 implies ¥’ = b— 1 and
m’ = m, while r € {g,s} implies ¥ = b and m' = m — 1.
We proceed by induction on (¢,s) — (u, q):
— Case (t,5) = (Ar.p)v,s) =5 (p{z\v},s) = (u,q). Let P(x;p), be the
sub-derivation for (Az.p)v in @. Assume that P, ), ends with rule
(@p2). Then v must be assigned type S > n x S, which is not possible
by Lemma [22] Let &, be the following derivation:

D> Mg pyx: M Flpmp.dp) 0 S > g \ &, > [, Fvmodo) 5 A
F)\I.p '—(bp7mp,dp) Ax.p : M = (S > K/) Fv I—(b'uym'uyd'u) v S > (M X 8)
Dgp + Dy FOFOetbpmotmp dutdn) (Agp )y 0 S>> K

(1)
(@)




46

D (rz.p)» Must end with rule (@) and @ must be of the following form:

Dy Do AFLameds) 50 8

(conf)
F)\x_p +I,+A F(14by +bp+bs,my+mptms,do+dp+ds) (()\Z‘.p)v,S) Kk

where I' = Iy p+ 1y + A, 0 =1+by + by + bs, m = my + mp + mg,
and d = d, + d, + ds. By Lemma there exists Pp(a} > Mhap +
I, Flotbpmotmpdotdy) plo\ gyl 0 S > g, therefore we can build
(p(p{z\v},s) as follows:

(I)p{ac\v} > F)\x.p + 1, |_(bv+bp’mv+m’”d’”+d”) p{x\v} S>>k D> A }_(b“’ms’ds) s:S

(conf)

Dyep+ Dy + A b @utbp+bs,my+mpt+ms,dytdptds) (p{x\v},s) -

We can finally conclude since the first counter is equal to b — 1, while

the second and third remain the same.

Case (t,s) = (vp,s) — (vp',q) = (u,q), such that (p,s) — (p’,q). Then

we have three cases for the type derivation @, of p inside @:

e Case &, ends with (@). Let @ be the following derivation:
B, I, FOmed) g0 M= (8> k) B0 T, Flrmede) p: S>> (M x S) (@

[, + I, FOFbetbpmotmp.dotdy) 4, - S i
@ must be of the following form:

Dy D> AFOsmads) g1 8

(conf)
Iy + Ty 4 A ROFbotbptbemotmptmadotdytds) (yp ) g

where I' = I+ 1, + A is tight, b = 14+b, +b,+bs, m = my+mp+ms,
and s = d, +dp+d,. Therefore, we can build the following derivation
for (p, s):

P, L, Flrmeds) p: S (M xS') @y ARbemads) 5.8
I, + AFbetbsmptmedptds) (5 g) 0 M x S

(conf)

Since I' is tight, then I}, + A is tight. Moreover, (p,s) — (7, ¢)
implies that —wval(p). Then we can apply the i.h., and thus there
exists a derivation for (p’, ¢) that must be of the following form:

By > Ty O medy) pf 0 S (M S') D> Ay Hlamadd) g2 S
Fp’ + Aq |_(bp/+bq,mp/+mq,dp/+dq) (p/’q) M x S/

(conf)

where Iy + A, = I, + A is tight, and the counters are related
properly. Let @, be the following derivation:

D, T, FOomod) 4o M= 8" > k' By Ty Flmeder) f - 87 (M x S)

FU + Fp’ }_(1+bv+bp/,mv+mp/,dv+dp/) Up/ . S// > ;‘43/

(@)




47

We can build &, 4) as follows:

By Dy Ay Flamadd) g S

(conf)
I+ Ty + A, | (L+bo by g mp -+ +mg,do+d,y +dq) (vp',q) : K’

where Iy + Iy + Ay =Ty + 1, + A =1, =1+b, + by + by,
m' =m,+my +my, and d' = d, + dp + dy. We can conclude since
the counters are related properly according to the i.h..
e Case @, ends with (@) or (@p2). These two cases are very similar to
the previous case.
— Case (t,s5) = (get;(Az.p), s) = (p{2\v}, s) = (u,q), where s = upd, (v, s).
Let @4 be the following derivation:

O, I, Flrmeds) 0 S>>

get)
I \@ FOtmeds) get, (Az.p) : {(1: [,(z))}US > K
@ must be of the following form:
&y P> Abbomadd g f(1: Ty (2)}US
(conf)

(I \o) + A Ftbetimtme i) (got (Aap). ) :

where I' = (I, \x) + A is tight, b = b, + b5, m = 1 + m, + m,, and
d = d,+d,. Since ®,> A Fsmsds) 5 [(1: T, (x))}US, then Lemma
gives s = upd,;(vg, s;), but we necessarily have vy = v and sj = .
Moreover, the lemma also gives @, > A,, F(vmvdo) 2 [ (2) U S(1) and
By > Ay FOmands) g0 8 where {(1: Ty(x)} WS = {(I : Tp(x) U
S()hS, A=A,+Ay, bs =b,+bg, mg = my+my, and ds = d, +dg .
Thus, by Lemma there exist @2 > AL FOumud) o ¢ [ () and
P2 > A2 HOTmLAY) g S(1), such that A, = AL + A2, b, = bl + b2,
m, = mh +m?, and d, = dl + d2. From &, > I}, Flrmede) p o S >
k and @1 > AL FCumud) 4 2 [(x), we obtain Dpiawt > (Ip \\@) +
AL plptbymytmydytdy) pfa\ 9} S > k, by Lemma We now
construct an alternative type derivation for s of the form:

P2 A2 FOLmLAD) S By Ay Flsmandas) o S
A2 4+ Ay FOHbrmitmdiddo) ypq (v, 8') : {(1: S(1))}: S

(upd)
Let ¢ = s = upd, (v, s") and let &, be this new derivation above. Notice
also that S = {(1: §(1))}; S’. Then we can construct ¢’ as follows:

Ppiavy  Pq
(I \z) + AL + A% + Ay - (b,m,d) (p{x\v},s) : K

(conf)

Notice that the type environment of the conclusion is (I, \z) + AL +
A2+ Ay = (I, \z) + Ay, + Ay = (I, \z) + A = I', and the counters
are as expected.
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— Case (t,s) = (seti(v,p),s) = (p,upd;(v,s)) = (u,q). Let &y be the
following derivation:

@, I, FOvmode) o M @y T, Flrmeds) e L1 M)L S > K

(set)
I, +7T, F(butbp Lbmotmp,suts) et (v, p) 1 S > K
@ must be of the following form:
Dy Dy Iy Femads) 50 8
(conf)

(T + Ty) + Ty FOutbotbolomsmy tmedotdy 1) (sety(0,p). 5) : 5

where I' = (I, +I,) + Iy is tight, b = b, + by +bs, m = 1+m,, +my, +my
and d = dy, + dp + ds. Therefore, we can build @4, (v,5) as follows:

O, I, FOvmod) o M B [ Hbsmsds) 50 8

by+b dy+d (upd)
[, + [y FOotbsmotmedutds) ypg (v, s) - {(1: M)}; S
Assume And we can build @' as follows:
@P > FP |_(bp7mp7dp) p: {(l : M)},S > K ¢updl(v,s)
(conf)

Ly 4 (I o+ Iy) HOetbotbemotmotine dvtdotds) (p upd, (v, 5)) : &

Notice that the type environment of the conclusion is I, + (I, +I) =T,
and the counters are as expected.
2. We show a stronger statement of the form:
Let (t,8) = (u,q). If &' > F®md) (4 g} : g, I is tight, and ( is tight or
—val(t)), then & ' F®™D (¢ 5) : g, where r = § implies ¥’ = b — 1 and
m’ =m, while r € {g, s} implies ¥ =b and m' =m — 1.
We proceed by induction on (t,s) = (u,q):
— Case (t,8) = ((Az.p)v,s) =5 (p{z\v},s) = (u,q). Then &' must be of
the following form:

@p{m\v} > Fp{w\v} -(6",m",d") p{x\v} S>>k DT (s imssds) 52 §
Fp{z\v} + I l_(bl/+b37m//+ms’d//+ds) (p{x\UL S) R

(conf)

such that I" = I,y + s, b = 0" +bs, m" = m" +m,, and d' = d" +d,.
By Lemma there exist @, > Ip;x : M Fpmede) 0 S > K and
@, > I, FOomedo) 40 M, such that Tyagy = 1 + Loy b = b, + by,
m'” =m, +m,, and d” = d, + d,. We can build @ as follows:

S Iy M Fbpomp.dp) 4y S > g ) &, > I, Fvmodo) 4,0 A ™)
I, FOrmed) g p s M = (S>> k) Iy Elomeds) 4 8> (M x S) @
I, + I, FOFbptbemptmy,dptds) (Ag pyy 1 S>> K o,

(Fp + Fv) + T, b (L4bp+by+bs,mp +my+ms,dp+dy+ds) (()\.T.t/)’l},S) ‘K
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such that b =1+b, 4+ b, +bs, m = mp +m, +mg, and d = d, +d, +ds.
And we can conclude with I" = I'eny + s = ([ + I3) + I, V) =
V' +bs =bp+b,+bs=(14+b,+b,+bs)—1=b—1,m' =m" +m, =
(mp +my)+ms=m,and d =d" +ds = (dp + d,) + ds = d.
— Case (t,8) = (vp,s) = (vp',q) = (u,q), such that (p,s) = (p’,q). Then
we have three cases for the type derivation @, of p’ inside &'
o Case &,y ends with (@). Let @y be the following derivation:

By [y FOomed) 4o M= 8 >k By Ly FOmd) 85 (M x 8)
Ly + T, F(Abo+b" motm” du+d") 4t - § > g

(@)

@' must be of the following form:
Dy P >, Flamadd g0 S

(F’U + Fp’) + Fq |_(1+bv+b”+bq,m,u+m//+mq,d1,+d//+dq) (Upl7 q) K

(conf)

such that I' = (I, + Iy) + I, tight, &/ = 1+ b, +b" + by, m' =
my +m"” +mg, and d' = d, + d"” + dg. So we can build @, . as
follows:

Q)p/ DFp/ |—(b”,m”,d”) p/ S>> (M % S/) @q [>Fq - (bg,mq,dq) q:S
Iy + I, (0" +bg,m" +mg,d" +dy) (,q) : MxS

(conf)

Since I is tight, then I}, + I, is tight. Moreover, (p,s) — (¢, ¢)
implies —val(p). Then we can apply the i.h., and thus there exists a
derivation for (p,s) that must be of the following form:

By, > I, FOomede) o S > (M x S By I Flemads) 5. 8

f
Ty + Ty Feotbomptmedptds) (6 M x S (conf)

where I, + Iy = Iy + I, is tight, and either (1) 0" 4+by = b, +bs—1,
m"” +mg = m,+mg, and d’ +dy = d, +ds, or (2) b +by = b, +bs,
m” +mg =my+ms—1, and d’ +d, = d,, + ds. So, we can build ¢
as follows:

D, T, Flomode) o M= (8> k) &0 T, FOrmeds) 8" > (M x S) ©
[, + I, FOFbetbpmotmp,dutdy) g - S s D

(T + Ip) + Iy FOFbotbotbomotmytmadutdybds) (pp ) g

(conf)

where Iy + I, + s =1y + 1y +1, =1,0=1+b, + b, + b,
m = m, +my +ms, and d = d, + d, + ds;. We can conclude since:
% Case (1): 0/ =14+b,+0"+by=1+b,+b,+bs—1=>b—1, and
the other counters are easy to check;
x Case (2):m/ =my+m" +mg=my+mp+ms —1=m—1,
and the other counters are easy to check.
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e Case @,y ends with (@) or (@p). These two cases are very similar
to the previous case.
— Case (t,s) = (get;(Az.p),s) — (p{xz\v},s) = (u,q), such that s =
upd, (v, s'). Let &y be the following derivation:

P2 172 FOLmIdD) s My By Ty Fmanda) of 1 S
I2+ry (b3 +br iy +my i +dy) upd, (v,s’) : {(I: M2)}; S

(upd)

Then @' must be of the following form:

Q-Sp{z\v} > Fp{m\v} F(b//’m”’d“) p{x\u} : {(l : M)},S > K [N

1" 2 " 2 1 2
Fp{a:\v} + (If +Fs/) @745 +b m” +mi+m s, d” +dy+d, ) (p{x\v},updl(v,s’)) K

(conf)

such that I = Fp{w\v}+(n?+ﬂg/), b = b”+b12)+bsl, m = m"+b%+bs/, and
d =d"+d?+dy. By Lemma there exist @, > I,;x : My brme:dp)
p:{(l: M3)}; 8> k and ®Lp I} FOwmudl) 2 My such that Lpiaey =
L, + T v =b, +b., m" =m,+ml, and d’ = d, + d}. Therefore, we
can build Pyer, (rz.p) as follows:

Dy Ty My FOemede) o L1 M2) LS >k
I, e ttmede) got (Az.p) : {(1: M1 UM2)}S >k

(get)
By Lemma we have @, > Il + I'? by b3 my+midy+d3) ) 0 My LU M.
Thus, we can build @54, (v,s) as follows:

Gy > TL + T2 FOuAbimomldi+d0) oo My UMy By b Ty Fsrmardsr) o 0§
(I} +T2) + Ty (b +5 by smyAmimesd, +di+d.) upd,(v,s') : {(l: M1 UM2)};S

(upd)

Finally, we can build @ as follows:

ngetl()\w.p) ¢updl(v,s’)

(conf
I,+ (I} + T2+ Ty b (bp by, b5 by Lt mptima, +mi tmysdp+d, +d3 +d,r) (get,(Az.p),upd;(v,s’)) : k

such that b = b, + bl + b2 + by, m = 1 +m, +ml + m2 + my, and
d = dp+dy+d2+dy. And we can conclude with I" = Iy +(I2 41y ) =
Lyt T4 T24 T, b = b"+b2+by = b,+bl +b2+bsy = b, and m’ = m/ +
m2+mg =mp+ml+m2+my = (1+my+ml+m2+my)—1=m—1,
d=d"+d+dy =d,+d +d>+dy =d.

— Case (t,s) = (seti(v,p),s) — (p,upd;(v,s)) = (u,q). Let &y be the
following derivation:

Dy T, Flomed) - M @y T F0amsds) 50 8
[, + Ty Flotbsmotms.dotds) ypq (v, s) : {(I: M)}; S

(upd)
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@' must be of the following form:

@, I FOomeds) L1 M)} S>>k @
T, + (T + Iy) Flotbotbsmptmotms dptdutds) ( upd, (v, 5)) : K

(conf)

such that I' = I}, + (I, + I), b’ = by + by + bs, m' = my, + m, + mg,
and d’' = d, + d, + ds. Therefore, we can build @ as follows:

@, T, Flomode) o Mo @y T, Flemede) o (1 M) S > (
[y + T, ot dlametmp.dotdy) sot) (v, p) : S>> K

set)

Dy

(F'u + Fp) + I }_(b,u+bp+bs,1+mv+mp+ms,du+dp+ds) (setl(v,p),S) C K

Notice that the type environment of the conclusion is (I'y+1,)+1s =T,
and the counters are as expected.

Theorem 1 (Quantitative Soundness and Completeness).

1. (Soundness) If &-1" Fbmd) (1 s) : k tight, then there exists (u, q) such that
u € no and (t,s) —™ (u,q) with b B-steps, m g/s-steps, and |(u,q)| = d.

2. (Completeness) If (t,s) —"™D (u,q) and u € no, then there exists >
I Femlwal) (¢ s) : k5 tight.

Proof.

1. The proof follows by induction over b+ m:

Case b+m = 0. Then b = m = 0, therefore ¢ € no, by point (1) of Item([l]
and d = [t|, by point (2) of Ttem [I} Let v = ¢ and ¢ = s, then we can
conclude since |(u,q)| = |u| = |t| = d.

Case b+ m > 0. Then b > 0 or m > 0, and in either case
t ¢ no, by Lemma [2| Note that (¢,s) is not final because t is un-
blocked by Prop. [3| Therefore, by Prop. [2| there exists (¢, s") such that
(t,s) — (¢',s'). By Lemma there exists @ > I" F®md) (¢ ¢ : g,
such that ' +m’ = b+ m — 1. By the i.h., there exists (u, q), such that
u € no, (t',s') - (u,q) and d = |(u, q)|. So we can conclude with
(t,s) = (t',s") &™) (u,q), which means that (¢, s) —®™ (u,q), as
expected.

2. By induction over b+ m:

Case b+m = 0. Then b =m = 0 and (¢,$) = (u,q). We can conclude
by Lemma [][T] and Lemma []2]

Case b+ m > 0. Then there exists (¢/,s'), such that (t,s) —(10)
(t',s) =»O=Lm) (u,q) or (t,s) =D (t',s) =MD (4 q). By the
i.h., there exists @' I" 1wl (¢ §') . tight, such that b +m/ =
b+ m — 1. By Lemma we have @ " " m" (w0 (t,s) : k tight,
such that b’ +m/ =1+t + m/. Therefore, b’ + m” = b+ m, since the
fact that b = b, and m” = m can be easily checked by a simple case
analysis.

(conf)
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