
A Quantitative Understanding of Exceptions

Miguel Ramos∗1, Riccardo Treglia2, and Delia Kesner3

jmiguelsramos@gmail.com riccardo.treglia@unibo.it kesner@irif.fr

1LIACC, DCC, Faculdade de Ciências, Universidade do Porto
Rua do Campo Alegre s/n, 4169–007 Porto, Portugal

2Department of Computer Science, University of Bologna
3IRIF, CNRS, Université Paris Cité & Institut Universitaire de France

1 Introduction

We show that non-idempotent intersection types can be used to obtain a quantitative relational model for
a computational version of Plotkin’s open call-by-value λ-calculus equipped with effectful operations given
by exception handling. To achieve this result we adopt the monadic approach proposed by Moggi [Mog89]
and popularized by Wadler [Wad95], which reflect the monad semantics into the operational rules of the
language and its associated type system. Indeed, according to Moggi, call-by-value effectful programs
can be abstracted by a generic calculus based on a few common treats, which are then combined with
complementary specific rules for the effectful computations. The call-by-value λ-calculus that is going
to be presented, equipped with handling operations over all possible exceptions, is an instance of this
generic formalism. In fact, we combine at the computational level both nullary algebraic operators of the
form raisee() for raising an exception e, and specific effects handlers of the form handlee(t, u), which are
syntactical constructors for handling raised exceptions. Actually, both operators can be seen as families of
operators indexed over a set of possible exceptions E .

The relational model that we propose is specified as a monadic intersection type system. More precisely,
we use recent tightness techniques [AGK20], which, instead of providing upper bounds for the evaluation
lengths of terms, give exact measures. Indeed, judgments are decorated with counters capturing both the
number of evaluation steps, as well as the size of normal forms. Besides the usual counter for the number
of β steps, we have two additional counters that measure the effectful behaviour of the language, one to
count the successful handling of exceptions and another one to count both exceptions that are propagated,
and unsuccessful handling. We show quantitative soundness and completeness of the type system with
respect to the language’s operational semantics.

2 Syntax and Operational Semantics

Let E be a set of constants to identify exceptions. The set of terms is given by the following grammar:

v, w ::= x | λx.t
t, u, p ::= v | vt | handlee(t, u) | raisee()

∗Supported by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia,
through the individual research grant 2021.04731.BD.

1

mailto:jmiguelsramos@gmail.com
mailto:riccardo.treglia@unibo.it
mailto:kesner@irif.fr

We define different predicates over terms in order to simplify the presentation of the reduction rules:
we write isvalue(t) iff t is a variable or of the form λx.u; israisee(t) iff t is of the form raisee(); and
israise(t) whenever we do not care about e.

The reduction relation is defined by the following rules:

(b)
(λx.t)v → t{x\v}

(r)
v raisee() → raisee()

(h1)
handlee(raisee(), t) → t

[isvalue(t)] or [israisee′(t) (e
′ ̸= e)]

(h2)
handlee(t, u) → t

t → u
(c1)

handlee(t, p) → handlee(u, p)

t → u
(c2)

vt → vu

We write ↠ for the reflexive-transitive closure of →, and t ↠(b,h,p) u if t reduces to u in b b-steps, h
h1-steps, and p r/h2-steps. Rule (r) propagates exceptions through applications. The successful handling
of exceptions is captured by (h1), since it takes place when there is a raise in the evaluation position of
the handler and both are indexed by the same exception. Rule (h2) captures the unsuccessful handling
of exceptions: when there is either a value or a raise indexed by a different exception in the evaluation
position of the handler.

Our operational semantics respects Haskell’s behavior when handling exceptions. However, while
Haskell continuations are attached to exceptions, in this language continuations are attached to handlers.

Example 2.1. In the following Haskell example, the catch function will catch the following exception
Exception (print "div by zero") thrown when a division by zero occurs, and apply id to continuation
print "div by zero":

catch (((λx.λy.if y == 0 then (throw (print "div by zero")) else (x/y))1)0) id

→4 catch (Exception (print "div by zero")) id →2 print "div by zero"

Using handle and raise, we can capture the whole behavior by simply parameterizing the operations
by an exception handling division by zero div0:

handlediv0(((λx.λy.if y == 0 then raisediv0() else (x/y))1)0, id (print "division by zero"))
→3 handlediv0(raisediv0(), id (print "division by zero")) →2 print "division by zero"

The size of normal forms is defined as follows:

|raisee()| = 1 |x| = 0 |λx.t| = 0 |vt| = 1 + |t| |handlee(t, u)| = 1 + |t|

As customary in effectful languages, our reduction relation is a weak strategy, i.e., reduction does not
occurr in the body of abstractions. Being so, it makes sense to assign size zero to abstractions that are
not applied.

The set of normal forms can be characterized by the following grammar:

(Neutral) ne ::= x no/ | (λx.t) ne | handlee(ne, t)
(Pseudo-Normal) no/ ::= x | λx.t | ne

(Normal) no ::= raisee() | no/

If we ignore the operations that handle exceptions, we can see that these normal forms are precisely
the ones expected for Plotkin’s open call-by-value λ-calculus, when we restrict applications to only have
values on the left. Since we consider raisee() to be a valid result of a computation, we have to add it to

2

the set of normal forms. The behavior of handlee(t, u), however, depends on the form of t (in fact, this
is the reason why these operations are not algebraic as stated in the Section 1). Since the behavior of a
handling operator depends on the subterm t in the evaluation position, when t is a normal form that is
neither a value, nor a raise, the wrapping handling should be considered as “stuck”.

Finally, since a stuck handlee(t, u) is also neither a value, nor a raise, it is a neutral term. Also, note
that, even though raisee() is a normal form, it does not produce a normal form when appearing at the
right of an application. For that reason, we separate raisee() from the rest of the normal forms.

The following proposition states that the set of normal forms is characterized by the above grammar.

Proposition 2.2 (Characterization of Normal Forms). Let t be a term. Then, t ̸→ iff t ∈ no.

Example 2.3. Catching exceptions:

(λx.handlee(xy, x)) (λz.raisee()) →b handlee((λz.raisee()) y, (λz.raisee()))
→b handlee(raisee(), λz.raisee()) →h1 λz.raisee()

And notice that |λz.raisee()| = 0.

3 Type System

Like in monadic idempotent intersection types [GVT23], and in quantitative global memory with non-
idempotent types [AKR23], we design our type system by having in mind that both terms and (non-
idempotent) intersection types become monadic. For this, we combine Girard’s boring CBV translation of
intuitionistic logic into linear logic [Gir87] with Moggi’s CBV translation [Mog89], to obtain the translation
A ⇒ B = !A ⊸ T (!B), where T depends on the choice of monad, that, in turn, will depend on the effect that
is being considered. For the purposes of this paper, we will consider the exceptions monad TX = X → E⊕X,
where ⊕ is the disjoint union and E is a set of names of exceptions. To distinguish between persistent
and consuming constructors, we follow [AGK20] and [KV20] by introducing tight constant and persistent
typing rules.

Let ⋆ represent the unit type. The set of types is given by the following grammar:

(Tight Constants) tt ::= v | a | r | n
(Value Types) σ ::= v | a | M ⇒ δ
(Multi-Types) M ::= [σi]i∈I where I is a finite set

(Liftable Types) µ ::= v | a | M
(Types) τ ::= tt | M

(Monadic Types) δ ::= γ ⊕ τ where γ ∈ E ∪ {⋆}

Constant types are used to deal with persistent symbols, i.e., symbols that are not going to be consumed
during evaluation, and the choice of constant types comes from the need to be able to type every normal
form with a constant type: for persistent variables, we use v; for abstractions and variables that can be
replaced by abstractions, we use a; for raisee() we use r; and for neutral terms, we use n. Of course,
neutral terms will result from the interaction between normal terms, and this interaction is captured by
the type system by the persistent rules for applications and handles in normal form. Given an arbitrary
tight constant tt0, we write tt0 to denote all the other tight constants in tt different from tt0.

3

The type system is given by the following rules:

(ax)
x : [σ] ⊢(0,0,0,0) x : σ

Γ ⊢(b,h,p,s) t : δ
(abs)

Γ \\x ⊢(b,h,p,s) λx.t : Γ(x) ⇒ δ
(raisec)

⊢(0,1,0,0) raisee() : e⊕ []

(Γi ⊢(bi,hi,pi,si) v : σi)i∈I
(many)

+i∈I Γi ⊢(+i∈Ibi,+i∈Ihi,+i∈Ipi,+i∈Isi) v : [σi]i∈I

Γ ⊢(b,h,p,s) v : µ
(unit)

Γ ⊢(b,h,p,s) v : ⋆⊕ µ

Γ ⊢(b,h,p,s) v : M ⇒ δ ∆ ⊢(b′,h′,p′,s′) t : ⋆⊕M
(app)

Γ + ∆ ⊢(1+b+b′,h+h′,p+p′,s+s′) vt : δ

Γ ⊢(b,h,p,s) t : e⊕ τ
(propag)

Γ ⊢(b,h,1+p,s) vt : e⊕ τ

Γ ⊢(b,h,p,s) t : e⊕ [] ∆ ⊢(b′,h′,p′,s′) u : δ
(handle1)

Γ + ∆ ⊢(b+b′,1+h+h′,p+p′,s+s′) handlee(t, u) : δ

Γ ⊢(b,h,p,s) t : δ [δ = ⋆⊕ µ (µ ̸= n)] or [δ = e′ ⊕ τ (e ̸= e′)]
(handle2)

Γ ⊢(b,h,1+p,s) handlee(t, u) : δ

(absp)
⊢(0,0,0,0) λx.t : a

(raisep)
⊢(0,0,0,1) raisee() : e⊕ r

Γ ⊢(b,h,p,s) t : ⋆⊕ r
(app1p)

x : [v] + Γ ⊢(b,h,p,1+s) xt : ⋆⊕ n

Γ ⊢(b,h,p,s) t : ⋆⊕ n
(app2p)

Γ ⊢(b,h,p,1+s) (λx.u)t : ⋆⊕ n

Γ ⊢(b,h,p,s) t : ⋆⊕ n
(handlep)

Γ ⊢(b,h,p,1+s) handlee(t, u) : ⋆⊕ n

Rule (propag) is used to type vt, when t reduces to raisee(). In this case, the whole application will
reduce to raisee() (cf. reduction rule (r)), which is reflected in the typing rule. Rule (handle2) is used
to type handlee(t, u), when t reduces to raisee() (cf. reduction rule (s)). For this case, it is important to
clarify the following. Even though it is possible to type raisee() with either rule (raisec) or (raisep), the
former should be used to type raisee() when it is going to be consumed, and the latter when it is going
to persist in the normal form. We distinguish between these two cases by pivoting on the right-injection
of the type: we use [] when typing consumable exceptions, and r to type persistent exceptions. Rule
(handle1) is used to type handlee(t, u), when t reduces to a value or a raisee′(), such that e ̸= e′. These
two possibilities are reflected in the typing rule by using conditions: δ = ⋆ ⊕ µ for t reducing to a value;
and δ = e′ ⊕ τ (e ̸= e′) for t reducing to raisee′().

A multi-type M is tight, if all the types in M are tight. An environment Γ is tight, if it assigns tight
multi-types to all variables. A type δ is tight, if it is of the form γ ⊕ tt. A type derivation Φ is tight if
the type environment and the type of the conclusion are both tight.

Example 3.1 (Tight type derivation for Example 2.3). Let Φ0 be the following derivation:

(ax)
x : [[] ⇒ (e⊕ [])] ⊢(0,0,0,0) x : [] ⇒ (e⊕ [])

(many)
⊢(0,0,0,0) y : []

(app)
x : [[] ⇒ (e⊕ [])] ⊢(1,0,0,0) xy : e⊕ []

(ax)
x : [a] ⊢(0,0,0,0) x : a

(unit)
x : [a] ⊢(0,0,0,0) x : ⋆⊕ a

(handle1)
x : [[] ⇒ (e⊕ []), a] ⊢(1,0,0,0) handlee(xy, x) : ⋆⊕ a

(abs)
⊢(1,0,0,0) λx.handlee(xy, x) : [[] ⇒ (e′ ⊕ []), a] ⇒ (⋆⊕ a)

4

And Ψ0 be the following derivation:

(raisec)
⊢(0,1,0,0) raisee() : e⊕ []

(abs)
⊢(0,1,0,0) λz.raisee() : [] ⇒ (e⊕ [])

(absp)
⊢(0,0,0,0) λz.raisee() : a

(many)
⊢(0,1,0,0) λz.raisee() : [[] ⇒ (e⊕ []), a]

(unit)
⊢(0,1,0,0) λz.raisee() : ⋆⊕ [[] ⇒ (e⊕ []), a]

Then we can build the following derivation:

Φ0 Ψ0
(app)

⊢(2,1,0,0) (λx.handlee(xy, x))(λz.raisee′()) : ⋆⊕ a

The following theorem is the main result of this paper and reveals the expressiveness of our type system.
For any tight type derivation Φ of a program t with counters b, h, p, and s, we are able to show that t
evaluates to a normal form of size s in exactly b b-steps, h h1-steps, and p r/h2-steps, where h is the
number of exception that were handled, and p is the number times exceptions were propagated. Therefore,
the type system is not only sound, i.e., able to guess the number of steps to normal form as well as the
size of this normal form, but also complete with respect to the operational semantics.

Theorem 3.2 (Soundness and Completeness).

• (Soundness) If Φ▷Γ ⊢(b,h,p,s) t : δ tight, then there exists u ∈ no, such that t ↠(b,h,p) u, with b b-steps,
h h1-steps, p r/h2-steps, and |u| = s.

• (Completeness) If t ↠(b,h,p) u, with b b-steps, h h1-steps, and p r/h2-steps, then there exists Φ ▷
Γ ⊢(b,h,p,|u|) t : δ tight.

Example 2.3 illustrates that (λx.handlee(xy, x)) (λz.raisee()) evaluates to λz.raisee() in 2 b-steps
and 1 h1-steps, and that |λz.raisee()| = 0. Example 3.1 illustrates that the type system agrees with these
measures, since there is a tight type derivation with counters b = 2, h = 1, p = 0, and s = 0.

4 Conclusion

In this work, we propose a tight type system for a calculus with exception handlers. Neither the calculus
nor the type system can fit inside a general treatment as for example the one in [GVT23], where a monadic
idempotent intersection type system is defined for a computational λ-calculus with algebraic operators à la
Plotkin and Power [PP03]. In fact, exception handlers (like continuations) cannot be modelled as algebraic
effects [PP13]. However, more general theories of algebraic effects have recently emerged, they combine
algebraic operations with specific algebraic morphisms to manipulate program flow: the resulting theory is
referred to as the theory of effects and handlers [BP15], [PP13] (and see [Pre15] for a gentle introduction).
Exception handlers can be viewed as a preliminary step to a general treatment of tight types including
arbitrary effects, instead of algebraic effects only.

References

[AGK20] Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and
split bounds, fully developed. J. Funct. Program., 30(e14):1–101, 2020. doi:10.1017/

S095679682000012X.

5

https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1017/S095679682000012X

[AKR23] Sandra Alves, Delia Kesner, and Miguel Ramos. Quantitative global memory. In Logic, Language,
Information, and Computation - 29th International Workshop, WoLLIC 2023, July 11-14, 2023,
Proceedings, 2023. To appear.

[BP15] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. J. Log.
Algebraic Methods Program., 84(1):108–123, 2015. doi:10.1016/j.jlamp.2014.02.001.

[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/

0304-3975(87)90045-4.

[GVT23] Francesco Gavazzo, Gabriele Vanoni, and Riccardo Treglia. On monadic intersection types, 2023.
Submitted.

[KV20] Delia Kesner and Pierre Vial. Consuming and persistent types for classical logic. In Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020,
pages 619–632. ACM, 2020. doi:10.1145/3373718.3394774.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In 4th Annual Symposium on
Logic in Computer Science, (LICS), 1989, Pacific Grove, California, USA, pages 14–23. IEEE
Computer Society, 1989. doi:10.1109/LICS.1989.39155.

[PP03] Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Appl. Categorical
Struct., 11(1):69–94, 2003. doi:10.1023/A:1023064908962.

[PP13] Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Log. Methods Comput. Sci.,
9(4), 2013. doi:10.2168/LMCS-9(4:23)2013.

[Pre15] Matija Pretnar. An introduction to algebraic effects and handlers. invited tutorial paper. In
Dan R. Ghica, editor, The 31st Conference on the Mathematical Foundations of Programming
Semantics, MFPS 2015, Nijmegen, The Netherlands, June 22-25, 2015, volume 319 of Electronic
Notes in Theoretical Computer Science, pages 19–35. Elsevier, 2015. doi:10.1016/j.entcs.

2015.12.003.

[Wad95] Philip Wadler. Monads for functional programming. In 1st International Spring School on
Advanced Functional Programming Techniques on Advanced Functional Programming, (AFP),
1995, B̊astad, Sweden, Tutorial Text, volume 925 of Lecture Notes in Computer Science, pages
24–52. Springer, 1995. doi:10.1007/3-540-59451-5_2.

6

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/3373718.3394774
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1007/3-540-59451-5_2

	Introduction
	Syntax and Operational Semantics
	Type System
	Conclusion

