A Quantitative Understanding of
Exceptions

_1 Riccardo Treglia > Delia Kesner 3

TLLA 2023

LIACC, DCC, Faculdade de Ciéncias, Universidade do Porto
“Universita di Bologna
3IRIF, CNRS, Université Paris Cité & Institut Universitaire de France

Programming Languages

\-calculus (Pure) N Real (Impure)

A Quantitative Understanding of Exceptions 1of 20

Programming Languages

\-calculus (Pure) ~N Real (Impure)

« Simple structure

A Quantitative Understanding of Exceptions 1of 20

Programming Languages

\-calculus (Pure) ~N Real (Impure)

 Simple structure « Complicated structure

A Quantitative Understanding of Exceptions 1of 20

Programming Languages

\-calculus (Pure) ~N Real (Impure)

 Simple structure « Complicated structure

e No side-effects

A Quantitative Understanding of Exceptions 1of 20

Programming Languages

\-calculus (Pure) ~N Real (Impure)

 Simple structure « Complicated structure

e No side-effects o Side-effects

A Quantitative Understanding of Exceptions 1of 20

Programming Languages

\-calculus (Pure) ~N Real (Impure)

 Simple structure « Complicated structure
» No side-effects « Side-effects

 Easy to reason about

A Quantitative Understanding of Exceptions 1of 20

Programming Languages

\-calculus (Pure) ~N Real (Impure)

 Simple structure « Complicated structure

» No side-effects « Side-effects

 Easy to reason about « Hard to reason about
\ b, \

A Quantitative Understanding of Exceptions 1of 20

Programming Languages

\-calculus (Pure) ~N Real (Impure)

 Simple structure « Complicated structure
» No side-effects « Side-effects
 Easy to reason about « Hard to reason about
+ Useless for programmers

\ y, \

A Quantitative Understanding of Exceptions 1of 20

Programming Languages

« Simple structure
» No side-effects
 Easy to reason about

+ Useless for programmers

X\-calculus (Pure) N

Real (Impure)

« Complicated structure
» Side-effects
e Hard to reason about

« Interact with the real world

A Quantitative Understanding of Exceptions

1of 20

Programming Languages

\-calculus (Pure)

« Simple structure
» No side-effects
 Easy to reason about

 Useless for programmers(?)

A Quantitative Understanding of Exceptions

Real (Impure)

« Complicated structure
» Side-effects
e Hard to reason about

« Interact with the real world

1of 20

Programming Languages

Is the \-calculus useless for programmers?

A Quantitative Understanding of Exceptions 2 of 20

Programming Languages

Is the \-calculus useless for programmers?

in “Correspondence between ALGOL 60 and Church's Lambda-notation: part I”

Peter Landin

A Quantitative Understanding of Exceptions 2 of 20

Programming Languages

Is the \-calculus useless for programmers?

in “Correspondence between ALGOL 60 and Church's Lambda-notation: part I”

Peter Landin

How can we add effects to pure languages?

A Quantitative Understanding of Exceptions 2 of 20

Programming Languages

Is the X\-calculus useless for programmers?

Peter Landin

in “Correspondence between ALGOL 60 and Church's Lambda-notation: part I”

How can we add effects to pure languages?

Eugenio Moggi

in “Notions of Computation and Monads”

A Quantitative Understanding of Exceptions 2 of 20

Exceptions

A Quantitative Understanding of Exceptions 3 of 20

Exceptions

Moggi’s CBV Encoding Effect Operations

A Quantitative Understanding of Exceptions 3 of 20

Exceptions

Moggi’s CBV Encoding Effect Operations

Let E be the type of exceptions.
Then TA= (£ @ A):

A Quantitative Understanding of Exceptions 3 of 20

Exceptions

Moggi’s CBV Encoding Effect Operations

Let E be the type of exceptions.
Then TA= (£ @ A):

V. o~ \

A Quantitative Understanding of Exceptions 3 of 20

Exceptions

Moggi’s CBV Encoding Effect Operations

Let E be the type of exceptions.
Then TA= (£ @ A):

v~ ing(v)

A Quantitative Understanding of Exceptions 3 of 20

Exceptions

Moggi’s CBV Encoding

Let E be the type of exceptions.
Then TA= (£ @ A):

in-(v)

tu ~» u

V. o~

Effect Operations

A Quantitative Understanding of Exceptions

3 of 20

Exceptions

Moggi’s CBV Encoding

Let E be the type of exceptions.
Then TA= (£ @ A):

in-(v)
case u of in/(e) —
in(v) —t

V. o~

tu ~»

Effect Operations

A Quantitative Understanding of Exceptions

3 of 20

Exceptions

Moggi’s CBV Encoding

Let E be the type of exceptions.
Then TA= (£ @ A):

in-(v)
case u of inj(e) > inj(e)
in(v) —t

V. o~

tu ~»

Effect Operations

A Quantitative Understanding of Exceptions

3 of 20

Exceptions

Moggi’s CBV Encoding

Let E be the type of exceptions.
Then TA= (£ @ A):

in-(v)

case u of inj(e) — in(e)

Voo~
tu ~»

in(v) —tv

Effect Operations

A Quantitative Understanding of Exceptions

3 of 20

Exceptions

Moggi’s CBV Encoding

Let E be the type of exceptions.
Then TA= (£ @ A):

in-(v)

case u of inj(e) — in(e)

Voo~
tu ~»

in(v) —tv

Effect Operations

Let e be an exception name:

A Quantitative Understanding of Exceptions

3 of 20

Exceptions

Moggi’s CBV Encoding

Let E be the type of exceptions.
Then TA= (£ @ A):

in-(v)

case u of inj(e) — in(e)

Voo~
tu ~»

in(v) —tv

Effect Operations

Let e be an exception name:

+ Raising an exception:

raisee()

A Quantitative Understanding of Exceptions

3 of 20

Exceptions

Moggi’s CBV Encoding

Let E be the type of exceptions.
Then TA= (£ @ A):

in-(v)

case u of inj(e) — in(e)

Voo~
tu ~»

in(v) —tv

Effect Operations

Let e be an exception name:

+ Raising an exception:
raisee()
« Handling an exception:

handle,(t, u)

A Quantitative Understanding of Exceptions

3 of 20

Non-Idempotent Intersection Types

A Quantitative Understanding of Exceptions 4 of 20

Non-Idempotent Intersection Types

+ Intersection types that do not enjoy idempotency -

A Quantitative Understanding of Exceptions 4 of 20

Non-Idempotent Intersection Types

+ Intersection types that do not enjoy idempotency -

+ Express models capturing upper bound quantitative computational properties

“t is terminating in at most X steps iff t is typable”

A Quantitative Understanding of Exceptions 4 of 20

Non-Idempotent Intersection Types

« Intersection types that do not enjoy idempotency -

+ Express models capturing upper bound quantitative computational properties
“t is terminating in at most X steps iff t is typable”

« Size of type derivations is an upper bound for

A Quantitative Understanding of Exceptions 4 of 20

Non-Idempotent Intersection Types

Intersection types that do not enjoy idempotency -

Express models capturing upper bound quantitative computational properties
“t is terminating in at most X steps iff t is typable”

Size of type derivations is an upper bound for

Size explosion

tob = vy

2n
th = (Axxx)th_ th =5 Yy

A Quantitative Understanding of Exceptions 4 of 20

Non-Idempotent Intersection Types

Intersection types that do not enjoy idempotency -

Express models capturing upper bound quantitative computational properties
“t is terminating in at most X steps iff t is typable”

Size of type derivations is an upper bound for

Size explosion

tob = vy o
n
th = (Axxx)th_ ' tn. —5 Y
linear in n
A Quantitative Understanding of Exceptions 4 of 20

Non-Idempotent Intersection Types

Intersection types that do not enjoy idempotency -

Express models capturing upper bound quantitative computational properties
“t is terminating in at most X steps iff t is typable”

Size of type derivations is an upper bound for

exponential in n

Size explosion

tob = vy <
n
th = (Axxx)th_ ' tn. —5 Y
linear in n
A Quantitative Understanding of Exceptions 4 of 20

Split and Exact Measures

 To obtain split measures

e To obtain exact measures

A Quantitative Understanding of Exceptions 50f 20

Split and Exact Measures

 To obtain split measures

counters in judgments + tight constants + persistent typing rules

e To obtain exact measures

A Quantitative Understanding of Exceptions 50f 20

Split and Exact Measures

« To obtain split measures

counters in judgments + tight constants + persistent typing rules

e To obtain exact measures

A Quantitative Understanding of Exceptions 50f 20

Split and Exact Measures

« To obtain split measures

counters in judgments + tight constants + persistent typing rules

e To obtain exact measures

A Quantitative Understanding of Exceptions 50f 20

Split and Exact Measures

« To obtain split measures

counters in judgments + tight constants + persistent typing rules

e To obtain exact measures

+ Obtain models capturing exact quantitative computational properties

“t is terminating in exactly X steps with normal form of size Y
iff t is typable with counter (X, Y)”

A Quantitative Understanding of Exceptions 50f 20

A Quantitative Understanding

of Exceptions

To build a quantitative model (expressed as a tight type system)
that captures exact quantitative properties of a
A-calculus with operations that raise and handle exceptions.

A Quantitative Understanding of Exceptions 6 of 20

Syntax

A Quantitative Understanding of Exceptions 7 of 20

Syntax

» We distinguish between and

Values
Terms =

A Quantitative Understanding of Exceptions

7 of 20

Syntax

» We distinguish between values v and

Values v,w 1= x|Axt
Terms =

A Quantitative Understanding of Exceptions

7 of 20

Syntax

» We distinguish between values v and computations t (terms)

Values v,w 1= x|Axt
Terms tu == v|..

A Quantitative Understanding of Exceptions 7 of 20

Syntax

» We distinguish between values v and computations t (terms)

« Applications are restricted to the form vt

Values v,w 1= x|Axt
Terms tu == v|vt]..

A Quantitative Understanding of Exceptions 7 of 20

Syntax

+ We distinguish between values v and computations t (terms)
« Applications are restricted to the form vt

» Effect operations are used to raise and handle exceptions

Values v,w 1= x|Axt
Terms tu == v|vt|raise.() |handle.(t, u)

A Quantitative Understanding of Exceptions 7 of 20

Syntax

+ We distinguish between values v and computations t (terms)
« Applications are restricted to the form vt

» Effect operations are used to raise and handle exceptions

Values v,w 1= x|Axt
Terms tu == v|vt|raise.() |handle.(t, u)

raisec()| =1 [x|=0 |Ixt|=0 |vt|=1+|t| |handle.(t u)| =1+ |t

A Quantitative Understanding of Exceptions 7 of 20

Operational Semantics

A Quantitative Understanding of Exceptions 8 of 20

Operational Semantics

(b)
(Ax.t)v — t{x\v}

A Quantitative Understanding of Exceptions 8 of 20

Operational Semantics

(r)

(Ax.t)v — t{x\v} ° v raise.() — raisee()

A Quantitative Understanding of Exceptions 8 of 20

Operational Semantics

(r)

(Ax.t)v — t{x\v} ° v raisec() — raisee()

(h1)

handlec(raiseq(), t) — t

A Quantitative Understanding of Exceptions 8 of 20

Operational Semantics

(r)

(Ax.t)v — t{x\v} ° v raisec() — raisee()

(1) [isvalue(t)] or [israisey(t) (€ # €)]
handlec(raiseq(), t) — t handle(t, u) — ¢

(h2)

A Quantitative Understanding of Exceptions 8 of 20

Operational Semantics

(r)

(Ax.t)v — t{x\v} ° v raisec() — raisee()

(1) [isvalue(t)] or [israiseq(t) (€' # €)]

. h2
handlec(raiseq(), t) — t handle(t, u) — t (h2)
t—u
(c1) Y ()
handle.(t, p) — handleq(u, p) vt — vu

A Quantitative Understanding of Exceptions 8 of 20

Operational Semantics

(r)

(Ax.t)v — t{x\v} ° v raisec() — raisee()

(1) [isvalue(t)] or [israiseq(t) (€' # €)]

. h2
handlec(raiseq(), t) — t handle(t, u) — t (h2)
t—u
(c1) Y ()
handle.(t, p) — handleq(u, p) vt — vu

Weak reduction: we do not reduce inside abstractions
We allow open normal forms

A Quantitative Understanding of Exceptions 8 of 20

Operational Semantics s§p Example

(Ax.handle.(xy, x)) (Az.raise())

(O # b-steps, 0 # exceptions handled, 0# exceptions propagated)

A Quantitative Understanding of Exceptions 9 of 20

Operational Semantics s§p Example

(Ax.handleq(xy, x)) _

(O # b-steps, 0 # exceptions handled, 0# exceptions propagated)

A Quantitative Understanding of Exceptions 9 of 20

Operational Semantics s§p Example

(Ax.handleq(xy, x)) _

—p handlec((Az.raisec()) y, (A\z.raise.()))

(1 # b-steps, 0 # exceptions handled, 0# exceptions propagated)

A Quantitative Understanding of Exceptions 9 of 20

Operational Semantics s§p Example

(Ax.handle.(xy, x)) _

—p handle.((Az.raisec()) - (Az.raisee()))

(1 # b-steps, 0 # exceptions handled, 0# exceptions propagated)

A Quantitative Understanding of Exceptions 9 of 20

Operational Semantics s§p Example

(Ax.handle.(xy, x)) _

—p handle.((Az.raisec()) - (Az.raisee()))

—p handlec(raiseq(), \z.raiseq())

(2 # Db-steps, 0 # exceptions handled, 0# exceptions propagated)

A Quantitative Understanding of Exceptions 9 of 20

Operational Semantics s§p Example

(Ax.handleq(xy, x)) _

—p handlec((Az.raisee()) . (Az.raisec()))
—p handle.(raise.(),/\z.raisee())

(2 # b-steps, 0 # exceptions handled, 0# exceptions propagated)

A Quantitative Understanding of Exceptions 9 of 20

Operational Semantics s§p Example

(Ax.handleq(xy, x)) _

—p handlec((Az.raisee()) . (Az.raisec()))
—p handle.(raise.(),/\z.raisee())

—mn1 Azraiseg()

(2 # b-steps, 1 # exceptions handled, 0# exceptions propagated)

A Quantitative Understanding of Exceptions 9 of 20

Encoding Arrow Types

A Quantitative Understanding of Exceptions 10 of 20

Encoding Arrow Types

A Quantitative Understanding of Exceptions 10 of 20

Encoding Arrow Types

A= B GirariéCBV IA —o 1B
— ~——
IL ILL

A Quantitative Understanding of Exceptions 10 of 20

Encoding Arrow Types

Moggi’s CBV
>

A=B P 14 018 IA —o T(IB)
IL ILL

A Quantitative Understanding of Exceptions 10 of 20

Encoding Arrow Types

Moggi’s CBV
VS

A=B S 14018 1A — T(1B)
—— ~——
IL ILL
. . is an intersection of value types
A=A .. A

A Quantitative Understanding of Exceptions

10 of 20

Encoding Arrow Types

i ' Moggi’'s CBV
A= B P 14 _o1p ST 1A o T(1B)
~—— ~——
IL ILL

. . is an intersection of value types

A=A ... A
. . is the exceptions monad
TA=EDA

A Quantitative Understanding of Exceptions 10 of 20

Encoding Arrow Types

i ' Moggi’'s CBV
A= B P 14 _o1p ST 1A o T(1B)
~—— ~——
IL ILL

. - is an intersection of value types

A=A ... A
. . is the exceptions monad
TA=EDA

. - is a computation wrapping an intersection of value types

TIA ... Al=Ea[A ... A

A Quantitative Understanding of Exceptions 10 of 20

Types

A Quantitative Understanding of Exceptions 11 of 20

Types

e Values and Neutral Forms

« Computations

A Quantitative Understanding of Exceptions 11 of 20

e Values and Neutral Forms

Tight Constants
Value Types =
Multi-types =
Liftable Types =
Types

« Computations

A Quantitative Understanding of Exceptions 11 of 20

Types

e Values and Neutral Forms

Tight Constants tt == v]|a|n
Value Types =
Multi-types =
Liftable Types =
Types

» Computations

A Quantitative Understanding of Exceptions 11 of 20

e Values and Neutral Forms

Tight Constants
Value Types
Multi-types
Liftable Types
Types

+ Computations

Types

tt

A Quantitative Understanding of Exceptions

v]ial|n

via|lM=§

11 of 20

Types

e Values and Neutral Forms

Tight Constants tt

Value Types

Multi-types M
Liftable Types
Types

Q

« Computations

A Quantitative Understanding of Exceptions

v]ial|n
via|lM=§
[oi]ic/ where [is a finite set

11 of 20

Types

e Values and Neutral Forms

Tight Constants tt == v|a|n
Value Types o = vi]a|M=9
Multi-types M == [oj]ic) where | is a finite set
Liftable Types p == v|a| M

Types

« Computations

A Quantitative Understanding of Exceptions 11 of 20

Types

e Values and Neutral Forms

Tight Constants tt == v|a|n
Value Types o = vi]a|M=9
Multi-types M == [oj]ic) where | is a finite set
Liftable Types p == v|a| M
Types 7 == tt|M

« Computations

A Quantitative Understanding of Exceptions 11 of 20

Types

e Values and Neutral Forms

Tight Constants tt == v|a|n
Value Types o = vi]a|M=9
Multi-types M == [oj]ic) where | is a finite set
Liftable Types p == v|a| M
Types 7 == tt|M
« Computations
Monadic Types =

A Quantitative Understanding of Exceptions 11 of 20

Types

e Values and Neutral Forms

Tight Constants tt == v|a|n
Value Types o = vi]a|M=9
Multi-types M == [oj]ic) where | is a finite set
Liftable Types p == v|a| M
Types 7 == tt|M

« Computations

Monadic Types ¢ v @ 7 where v € EU {x}

A Quantitative Understanding of Exceptions 11 of 20

Type System

A Quantitative Understanding of Exceptions 12 of 20

Type System

 Judgments are decorated with counters

b . h . p . 9

A Quantitative Understanding of Exceptions 12 of 20

Type System

 Judgments are decorated with counters

[-steps
~——
G . h o p

A Quantitative Understanding of Exceptions

12 of 20

Type System

 Judgments are decorated with counters

[-steps
~——
N

exceptions handled

A Quantitative Understanding of Exceptions 12 of 20

Type System

 Judgments are decorated with counters

B-steps # exceptions propagated
—_———
I

exceptions handled

A Quantitative Understanding of Exceptions

12 of 20

Type System

 Judgments are decorated with counters

B-steps # exceptions propagated
———
& . h . b . 9
exceptions handled [normal form|

A Quantitative Understanding of Exceptions

12 of 20

Type System

 Judgments are decorated with counters

B-steps # exceptions propagated
———
& . h . b . 9
exceptions handled [normal form|

+ Some typing rules have two (or more) different versions

A Quantitative Understanding of Exceptions

12 of 20

Type System

 Judgments are decorated with counters

B-steps # exceptions propagated
———
& . h . b . 9
exceptions handled [normal form|

+ Some typing rules have two (or more) different versions

» Consuming: increase only b, h, and p counters

A Quantitative Understanding of Exceptions 12 of 20

Type System

 Judgments are decorated with counters

B-steps # exceptions propagated
———
& . h . b . 9
exceptions handled [normal form|

+ Some typing rules have two (or more) different versions

» Consuming: increase only b, h, and p counters
* Persistent: increase the s counter

A Quantitative Understanding of Exceptions 12 of 20

(Some) Typing Rules

A Quantitative Understanding of Exceptions 13 of 20

(Some) Typing Rules

(ri - (bihipisi) \, - Ui)iel

+ier T F(Fieibitichiticipitics) \ - [Ui]ie/

(many)

A Quantitative Understanding of Exceptions 13 of 20

(Some) Typing Rules

(I FO022) v - o (many) PR vip (unit)
+ig) Tj FFiebitiehitiepities) v« [o]ig rEGPS) v

A Quantitative Understanding of Exceptions 13 of 20

(Some) Typing Rules

(I FO022) v - o (many) PR vip (unit)
+ig) Tj FFiebitiehitiepities) v« [o]ig rEGPS) v

[EEAPS) v M= AFENPS) e M

r+A p(1+b+b ht-h ptp'sts) ¢ - § (app)

A Quantitative Understanding of Exceptions 13 of 20

(Some) Typing Rules

(I FO022) v - o (many) PR vip (unit)
+ig) Tj FFiebitiehitiepities) v« [o]ig rEGPS) v

FEGAPS) v M =5 AFENPS) e M

r+A p(1+b+b ht-h ptp'sts) ¢ - § (app)

[EGAPS) ¢ e] A RGPS g

[+ A pbH IR P s+5) handle (t, u) @ 6

(handlel)

A Quantitative Understanding of Exceptions 13 of 20

Exact Measures ()

Why do we need tightness and persistent typing rules?

A Quantitative Understanding of Exceptions 14 of 20

%ﬁf Exact Measures ()

Why do we need tightness and persistent typing rules?

Leto=[v]= (v @ 7).

(ax)

y: [v] 1-(0.0.0.0) y:v

y 1 [v] FO000) - [y]

(ax) (unit)
x: [o] (0.0.00) 5 . [v]= (v@) y : [v] 1(0.0.0.0) y:x @ [v] (

a

x: o]y :[v] (@00 Xy :veT

%‘ A Quantitative Understanding of Exceptions 14 of 20 '@

(many)

Pp)

%ﬁf Exact Measures ()

Why do we need tightness and persistent typing rules?

Leto=[v]= (v @ 7).

. (0.0,0,0) ., . (ax)
y:[v]F y:v (many)
(ax) y: — y: 1] (unit)
x: [o] 1(00.00) » . [v]= (v@) y : [v] 1-(0.0.0.0) y:x @ [v] (ap)
app
x: o]y :[v] - (@o.o[) Xy :veT
xy| =M
———

Xy #
A Quantitative Understanding of Exceptions 14 of 20

@{ Exact Measures (Wrong)

Why do we need tightness and persistent typing rules?

Leto=[v]= (v @ 7).

. (0.0,0,0) ., . (ax)
y:[v]F y:v (many)
(ax) y: — y: 1] (unit)
x: [o] 1(00.00) » . [v]= (v@) y : [v] 1-(0.0.0.0) y:x @ [v] (ap)
app
x: o]y :[v] - (@o.o[) Xy :veT
xy| =M
———

Xy #
A Quantitative Understanding of Exceptions 14 of 20

(Some) Typing Rules s§ Persistent

(absy)
H(0.000) \xt:a ’

FGhps) ¢ T
x: [v] + T HBAPIES) by n

(applp)

[Hbhps) ¢ s pn
[HGAPIES) (Ax.u)t i x @ n

(app2p)

A Quantitative Understanding of Exceptions 15 of 20

Exact Measures ()

A Quantitative Understanding of Exceptions 16 of 20

Exact Measures ()

(ax)
y:[v] -(0.000) . y

y o [v] FO000) vy y

(unit)

(applp)
x:[v],y:[v] F@OOM) xy: xpn

A Quantitative Understanding of Exceptions 16 of 20

Exact Measures ()

(ax)
y:[v] -(0.000) . y

y o [v] FO000) vy y

(unit)

(applp)
x:[v],y:[v] F@OOM) xy: xpn

xy| =l
~—

xy 5

A Quantitative Understanding of Exceptions 16 of 20

Exact Measures (Correct)

(ax)
y:[v] -(0.000) . y

y o [v] FO000) vy y

(unit)

(applp)
x:[v],y:[v] F@OOM) xy: xpn

xy| =l
~—

xy 5

A Quantitative Understanding of Exceptions 16 of 20

Validity of the Model

A Quantitative Understanding of Exceptions 17 of 20

k-
|
e

Validity of the Model

if oo 1 -EBBE ¢ . 5 tight,

A Quantitative Understanding of Exceptions 17 of 20

k-
|
e

Validity of the Model

if oo 1 -EBBE ¢ . 5 tight,
then Ju € no, s.t. t —BEE) |, and lul =B

A Quantitative Understanding of Exceptions 17 of 20

k-
|
e

Validity of the Model

if oo 1 -EBBE ¢ . 5 tight,
then Ju € no, s.t. t —BEE) |, and lul =B

A Quantitative Understanding of Exceptions 17 of 20

k-
|
e

Validity of the Model

if oo 1 -EBBE ¢ . 5 tight,
then Ju € no, s.t. t —BEE) |, and lul =B

if ¢ —@EE

A Quantitative Understanding of Exceptions 17 of 20

k-
|
e

Validity of the Model

if oo 1 -EBBE ¢ . 5 tight,
then Ju € no, s.t. t —BEE) |, and lul =B

If t — (EBEE)
then 3¢ & 1 HEBERYD) ¢ . 5 tight.

A Quantitative Understanding of Exceptions 17 of 20

k-
|
e

Typing Example

Let us consider the term exemplifying the operational semantics:

| \z.raise() | =0

(Axhandlec(xy, x)) (Azraises()) =319 Azraisee()

A Quantitative Understanding of Exceptions 18 of 20

Typing Example

 Let us consider the term exemplifying the operational semantics:

| \zraises() | =@
(Ax.handleg(xy, x)) (Az.raisee()) —»@100) Az.raiseg()

A Quantitative Understanding of Exceptions 19 of 20

Typing Example

+ Let us consider the term exemplifying the operational semantics:

| \z.raisec() | =@
(Ax.handle.(xy, x)) (Az.raise.()) — @10 Az.raiseq()

» We can build the following - derivation:

o v

(app)
y] -@Eom (Ax.handlec(xy, x))(Az.raisey()) : xd a

A Quantitative Understanding of Exceptions 19 of 20

Conclusion

« Simple language capable of raising and handling exceptions
« Following a weak (open) CBV strategy

 Provided a quantitative model capturing exact measures

A Quantitative Understanding of Exceptions

20 of 20

Conclusion

« Simple language capable of raising and handling exceptions
« Following a weak (open) CBV strategy

 Provided a quantitative model capturing exact measures
\

+ Different effects: global memory, I/O, non-determinism, ...
« Different Strategies: CBV (unrestricted), CBN, CBNeed, ...

+ Unifying frameworks: CBPV, \!-calculus, EE-calculus, ...

A Quantitative Understanding of Exceptions 20 of 20

The End

