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Is the X\-calculus useless for programmers?

Peter Landin

in “Correspondence between ALGOL 60 and Church's Lambda-notation: part I”

How can we add effects to pure languages?

Eugenio Moggi

in “Notions of Computation and Monads”
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Then TA= (£ @ A):
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case u of inj(e) — in(e)

Voo~
tu ~»

in(v) —tv

Effect Operations

Let e be an exception name:

+ Raising an exception:
raisee()
« Handling an exception:

handle,(t, u)
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Non-Idempotent Intersection Types

Intersection types that do not enjoy idempotency -

Express models capturing upper bound quantitative computational properties
“t is terminating in at most X steps iff t is typable”

Size of type derivations is an upper bound for

exponential in n

Size explosion

tob = vy <
n
th = (Axxx)th_ ' tn. —5 Y
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Split and Exact Measures

« To obtain split measures

counters in judgments + tight constants + persistent typing rules

e To obtain exact measures

+ Obtain models capturing exact quantitative computational properties

“t is terminating in exactly X steps with normal form of size Y
iff t is typable with counter (X, Y)”
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A Quantitative Understanding

of Exceptions

To build a quantitative model (expressed as a tight type system)
that captures exact quantitative properties of a
A-calculus with operations that raise and handle exceptions.
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Syntax

+ We distinguish between values v and computations t (terms)
« Applications are restricted to the form vt

» Effect operations are used to raise and handle exceptions

Values v,w 1= x|Axt
Terms tu == v|vt|raise.() |handle.(t, u)

raisec()| =1 [x|=0 |Ixt|=0 |vt|=1+|t| |handle.(t u)| =1+ |t
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(r)

(Ax.t)v — t{x\v} ° v raisec() — raisee()

(1) [isvalue(t)] or [israiseq(t) (€' # €)]

. h2
handlec(raiseq(), t) — t handle(t, u) — t (h2)
t—u
(c1) Y ()
handle.(t, p) — handleq(u, p) vt — vu

Weak reduction: we do not reduce inside abstractions
We allow open normal forms
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Operational Semantics s§p Example

(Ax.handleq(xy, x)) _

—p handlec((Az.raisee()) . (Az.raisec()))
—p handle.(raise.(),/\z.raisee())

—mn1 Azraiseg()

(2 # b-steps, 1 # exceptions handled, 0# exceptions propagated)
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A= B P 14 _o1p ST 1A o T(1B)
~—— ~——
IL ILL

. - is an intersection of value types

A=A ... A
. . is the exceptions monad
TA=EDA

. - is a computation wrapping an intersection of value types

TIA ... Al=Ea[A ... A
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e Values and Neutral Forms

Tight Constants tt == v|a|n
Value Types o = vi]a|M=9
Multi-types M == [oj]ic) where | is a finite set
Liftable Types p == v|a| M
Types 7 == tt|M

« Computations

Monadic Types ¢ v @ 7 where v € EU {x}
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Type System

 Judgments are decorated with counters

# B-steps # exceptions propagated
———
& . h . b . 9
# exceptions handled [normal form|

+ Some typing rules have two (or more) different versions

» Consuming: increase only b, h, and p counters
* Persistent: increase the s counter
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Validity of the Model

if oo 1 -EBBE ¢ . 5 tight,
then Ju € no, s.t. t —BEE) |, and lul =B

If t — (EBEE)
then 3¢ & 1 HEBERYD) ¢ . 5 tight.
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Typing Example

Let us consider the term exemplifying the operational semantics:

| \z.raise() | =0

(Axhandlec(xy, x)) (Azraises()) =319 Azraisee()
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 Let us consider the term exemplifying the operational semantics:

| \zraises() | =@
(Ax.handleg(xy, x)) (Az.raisee()) —»@100) Az.raiseg()
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Typing Example

+ Let us consider the term exemplifying the operational semantics:

| \z.raisec() | =@
(Ax.handle.(xy, x)) (Az.raise.()) — @10 Az.raiseq()

» We can build the following - derivation:

o v

(app)
y ] -@Eom (Ax.handlec(xy, x))(Az.raisey()) : xd a
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Conclusion

« Simple language capable of raising and handling exceptions
« Following a weak (open) CBV strategy

 Provided a quantitative model capturing exact measures
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« Simple language capable of raising and handling exceptions
« Following a weak (open) CBV strategy

 Provided a quantitative model capturing exact measures
\

+ Different effects: global memory, I/O, non-determinism, ...
« Different Strategies: CBV (unrestricted), CBN, CBNeed, ...

+ Unifying frameworks: CBPV, \!-calculus, EE-calculus, ...
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The End



